函数项级数的一致收敛

证明函数项级数 $\dps{\vsm{n}x^3e^{-nx^2}}$ 在 $[0,\infty)$ 上一致收敛.

 

证明:  由 $$\bex (x^3e^{-nx^2})'=x^2e^{-nx^2}(3-2nx^2)\sedd{\ba{ll}>0,&0<x<\sqrt{\frac{3}{2n}},\\ <0,&x>\sqrt{\frac{3}{2n}}\ea} \eex$$ 知 $$\bex \max_{x\in [0,\infty)}x^3e^{-nx^2}=\sex{\frac{3}{2n}}^\frac{3}{2}e^{-\frac{3}{2}}. \eex$$ 由 Weierstrass M-判别法即知结论.  

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值