常用的收敛级数整理_一致收敛与收敛有什么区别?

最近看到这个问题,思考了很久,也看了很多的回答,我愚昧地以为许多都不是很接“地气”的回答。

对于刚刚接触数学分析,或者工科数学的分析的同学,我觉得二者最重要的区别,就在于两个字”过渡“。

可能读到这里的你会有疑惑,但是请向下继续阅读。


首先我们谈什么是“一致”?

这里首先梳理一下我们遇到的一致的概念:一致连续,一致收敛。

这里的一致是什么意思呢?

我们知道研究函数

equation?tex=f%28x%29 在区间
equation?tex=%5Ba%2Cb%5D

上的连续性,只需要研究每个点上的连续性就可以了 . 对于

equation?tex=%5Cforall+x+%5Cin+%5Ba%2Cb%5D ,给定误差
equation?tex=%5Cvarepsilon 。只需要使得足够接近
equation?tex=x 的点
equation?tex=y+ 满足
equation?tex=%7Cf%28y%29-f%28x%29%7C%3C%5Cvarepsilon ,接近的程度我们一般用
equation?tex=%5Cdelta 来刻画 . 但是即使对于每个点
equation?tex=%5Cforall+x+%5Cin+%5Ba%2Cb%5D ,都能够找到相应的
equation?tex=%5Cdelta ,也不能够说明:能否找到一个统一的接近程度
equation?tex=%5Cdelta ,使得只要
equation?tex=y
equation?tex=x+ 能有此接近程度,那么就会满足误差条件

equation?tex=+++++++++++++++++++++++++++++++%7Cf%28y%29-f%28x%29%7C%3C%5Cvarepsilon

也就是说,刚才我们研究单点的连续性时,需要找到一个

equation?tex=%5Cdelta 就行,但是现在我们要找到满足所有
equation?tex=x+%5Cin+%5Ba%2Cb%5D
equation?tex=%5Cdelta . 如果这个
equation?tex=%5Cdelta 能够被找到,那么由于
equation?tex=%5Cdelta 满足所有的自变量
equation?tex=x , 那么我们说这种连续性与自变量的位置无关,也就是说函数
equation?tex=f%28x%29 在区间
equation?tex=%5Ba%2Cb%5D 上一致连续 .

下面来研究函数列或函数项级数的一致收敛问题 .

设函数列

equation?tex=%5C%7Bf_n%28x%29%5C%7D_%7Bn%3D1%7D%5E%5Cinfty 定义在
equation?tex=I 上,这里
equation?tex=I+ 可以是任何区间 . 所谓的收敛实际上就是
equation?tex=%5Cforall+x_0%5Cin+%5Ba%2Cb%5D 时数列
equation?tex=%5C%7Bf_n%28x_0%29%5C%7D 是收敛的 . 根据收敛准则,任给误差
equation?tex=%5Cvarepsilon%3E0 ,存在
equation?tex=N ,当
equation?tex=m%2Cn%3EN 时,成立
equation?tex=%7Cf_m%28x_0%29-f_n%28x_0%29%7C+%3C%5Cvarepsilon . 由于任意给定一个
equation?tex=x_0%5Cin+%5Ba%2Cb%5D ,就能够找到一个符合上述条件的
equation?tex=N ,那么我们能不能找到对于所有
equation?tex=x+%5Cin+%5Ba%2Cb%5D 都适配的正数
equation?tex=N_0 呢?实际上我们取上面所有
equation?tex=N 的上界
equation?tex=%5Csup+%5C%7BN%5C%7D 即可
[1] .但是有时候并不能尽如人意的找到 . 例如最简单的函数
equation?tex=x%5En 在区间
equation?tex=%5B0%2C1%5D 上就不能够找到适配所有
equation?tex=x+%5Cin+%5B0%2C1%5D
equation?tex=N_0 ,所以就不是一致收敛的了 .

这里我们看到,一致概念实际上针对的是变量的全体,就如一致连续和一致收敛的概念中所描述的那样 ,但是收敛就不存在这样的问题,例如函数列在单点处的收敛就退化为数列收敛的问题,就只有一个变量,这就不是困难的讨论了.


引入一致收敛的好处?

这里是本文的重点,前面已经提到过,一致收敛的好处在于”过渡“,这里的过渡指的是单独的函数的分析性质(连续,可导,积分)向 和函数 的分析性质的过渡 .

在数学分析的教材上,和函数的连续,可导,积分的性质都要有一个前提的条件:一致收敛 . 正是有了一致收敛作为桥梁,才能够使得每个函数的连续性,可导性与积分性质推到和函数上,这实际上是有限函数求和所得到的和函数性质所不需要的条件。(有限个连续 ,可导, 可积分函数的和也是连续,可导,可积分的) .

9a9076f74d1834d291f7e1e8a11e726e.png
笔者本人整理的讲义部分

.

高等数学或者数学分析,大部分时间都花在了函数性质的讨论上,而函数项级数的一致收敛告诉我们,如果能够先知道一致收敛性,我们就能够从单个函数直接得到和函数的性质 .

正如我们研究 傅里叶级数 时不正用到了函数项级数的一致收敛吗?


一致收敛几何上的表示

下面两个题目中的函数图像告诉我们,函数列在不一致收敛点处的图像是”突出的,不平稳的“[2].

95ff5c1a9cc9671012d02c1652cea360.png

c5f81a5dcbc6bcc27ef3daef36a8971c.png

从图像上的现象可以总结出下面判断函数列一致收敛的定理

函数列

equation?tex=%5C%7Bf_%7Bn%7D%28x%29%5C%7D 在区间
equation?tex=%5Crm%7BI%7D 上一致收敛的充分必要条件是

equation?tex=%5Clim_%7Bn+%5Clongrightarrow+%2B%5Cinfty%7D%5Csup_%7Bx%5Cin+%5Crm%7BI%7D%7D%7Cf_%7Bn%7D%28x%29-f%28x%29%7C%3D0

这里

equation?tex=%5Csup_%7Bx%5Cin+%5Crm%7BI%7D%7D%7Cf_%7Bn%7D%28x%29-f%28x%29%7C 描述的是函数
equation?tex=f_n%28x%29-f%28x%29 ”最突出“的地方有多高,当在极限过程中,”最突“的地方”不突“了,那么就可以判断是一致收敛的了 .

转载请注明出处,谢谢!

参考

  1. ^这个符号仅用于解释说明概念,不是正规符号
  2. ^意会即可 .
  • 7
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值