最近看到这个问题,思考了很久,也看了很多的回答,我愚昧地以为许多都不是很接“地气”的回答。
对于刚刚接触数学分析,或者工科数学的分析的同学,我觉得二者最重要的区别,就在于两个字”过渡“。
可能读到这里的你会有疑惑,但是请向下继续阅读。
首先我们谈什么是“一致”?
这里首先梳理一下我们遇到的一致的概念:一致连续,一致收敛。
这里的一致是什么意思呢?
我们知道研究函数


上的连续性,只需要研究每个点上的连续性就可以了 . 对于












也就是说,刚才我们研究单点的连续性时,需要找到一个








下面来研究函数列或函数项级数的一致收敛问题 .
设函数列
















这里我们看到,一致概念实际上针对的是变量的全体,就如一致连续和一致收敛的概念中所描述的那样 ,但是收敛就不存在这样的问题,例如函数列在单点处的收敛就退化为数列收敛的问题,就只有一个变量,这就不是困难的讨论了.
引入一致收敛的好处?
这里是本文的重点,前面已经提到过,一致收敛的好处在于”过渡“,这里的过渡指的是单独的函数的分析性质(连续,可导,积分)向 和函数 的分析性质的过渡 .
在数学分析的教材上,和函数的连续,可导,积分的性质都要有一个前提的条件:一致收敛 . 正是有了一致收敛作为桥梁,才能够使得每个函数的连续性,可导性与积分性质推到和函数上,这实际上是有限函数求和所得到的和函数性质所不需要的条件。(有限个连续 ,可导, 可积分函数的和也是连续,可导,可积分的) .

.
高等数学或者数学分析,大部分时间都花在了函数性质的讨论上,而函数项级数的一致收敛告诉我们,如果能够先知道一致收敛性,我们就能够从单个函数直接得到和函数的性质 .
正如我们研究 傅里叶级数 时不正用到了函数项级数的一致收敛吗?
一致收敛几何上的表示
下面两个题目中的函数图像告诉我们,函数列在不一致收敛点处的图像是”突出的,不平稳的“[2].


从图像上的现象可以总结出下面判断函数列一致收敛的定理
函数列



这里


转载请注明出处,谢谢!
参考
- ^这个符号仅用于解释说明概念,不是正规符号
- ^意会即可 .