matlab一致收敛函数,函数项级数一致收敛性及其应用.pdf

函数项级数一致收敛性及其应用.pdf

2016年12月 山东师范大学学报(自然科学版) Dec.2016

of

Jo哪al No册al V01.31

第31卷第4期 Sh粕dong UIlive鹅ity(NaturalScience) No.4

函数项级数一致收敛性及其应用

李苓玉 范进军+

(山东师范大学数学科学学院,250014,济南)

摘要笔者运用数形结合的思想方法,借助MA7rLAB软件对函数项级数的一致收敛性进行了编程实现,给出了应用举例,揭

示了函数序列动态收敛的过程,阐明了一致收敛的本质.

关键词函数项级数;一致收敛;编程实现;应用;MA’rLAB

174

中图分类号o17;o 文献标识码A doi: lo.3969/j.i鹞n.100卜4748.2016.04.003

1 引 言

级数求和及其敛散性判定是分析教材…中非常重要的部分.近几年,关于数学软件在函数项级数一致

收敛性判定问题的研究微乎其微,如文献[2]仅对MATLAB判定函数列一致收敛性问题做了简单介绍.受该

文章的启发,笔者以文献[1,3]中的数学理论为依据进行推广,研究MAⅡAB在函数项级数一致收敛性判定

中的编程实现及其具体应用问题.通过直观分析图像来发现其规律,利用其数据的可视化亲身体会函数序

列动态收敛的过程,进而阐明一致收敛的本质,探讨判定敛散性的新方法.

2预备知识

为了得到MATLAB对函数项级数一致收敛性判定的方法步骤、实验程序和实例应用,本文事先给出以

下几个引理.

引理1‘11

零.

引理2¨1 函数列{工(戈)}在数集D上一致收敛于八算)的充要条件是:

lim I工(戈)一八戈)I=0. (1)

sup

引理3… 函数项级数∑M。(石)在数集D上一致收敛于|s(髯)的充要条件是:

lim R。(戈)I=liml|s(石)一|s。(戈)I=0, (2)

suP sup

n咖#E正, n咖#E工J

其中.s(戈)=∑M。(戈),即级数的和函数;s。(茁)=∑M。(石),即级数的前凡项和.(下同)

引理4阳1 函数项级数∑M。(戈)在区间,上一致收敛于和函数|s(菇)的几何意义是,对任意给定的占>

z∈,,Is(算)

0,存在自然数Ⅳ=Ⅳ(占),当凡>Ⅳ(占)时,函数),=S。(菇)(戈∈,)的图像都落在带状区域{(z,y)I

一占

引理5‘31若函数项级数在某个区间不存在引理4中所提到的公共的Ⅳ=Ⅳ(占),就是非一致收敛.

现将一致收敛与非一致收敛进行对比如表1所示.

收稿日期:2016一06一14

+通讯作者,男,教授,硕士生导师

12

第4期 李苓玉,等:函数项级数一致收敛性及其应用 第31卷

3 MATLAB编程实现及应用

3.1 依必要条件编程实现 由引理l可得其逆否命题:若函数列{“。(戈)}在数集D上不一致收敛于零,则

函数项级数∑M。(z)在数集D上不一致收敛.据此,我们可对函数项级数的非一致收敛性进行判定.

3.1.1 一般步骤

1)

∑M。(z)不一致收敛.

2)

进而不一致收敛于零,则由引理1的逆否命题可知函数项级数∑u。(戈)不一致收敛.

3)

∑M。(戈)在数集D上不一致收敛;反之,则需要

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值