函数项级数一致收敛性及其应用.pdf
2016年12月 山东师范大学学报(自然科学版) Dec.2016
of
Jo哪al No册al V01.31
第31卷第4期 Sh粕dong UIlive鹅ity(NaturalScience) No.4
函数项级数一致收敛性及其应用
李苓玉 范进军+
(山东师范大学数学科学学院,250014,济南)
摘要笔者运用数形结合的思想方法,借助MA7rLAB软件对函数项级数的一致收敛性进行了编程实现,给出了应用举例,揭
示了函数序列动态收敛的过程,阐明了一致收敛的本质.
关键词函数项级数;一致收敛;编程实现;应用;MA’rLAB
174
中图分类号o17;o 文献标识码A doi: lo.3969/j.i鹞n.100卜4748.2016.04.003
1 引 言
级数求和及其敛散性判定是分析教材…中非常重要的部分.近几年,关于数学软件在函数项级数一致
收敛性判定问题的研究微乎其微,如文献[2]仅对MATLAB判定函数列一致收敛性问题做了简单介绍.受该
文章的启发,笔者以文献[1,3]中的数学理论为依据进行推广,研究MAⅡAB在函数项级数一致收敛性判定
中的编程实现及其具体应用问题.通过直观分析图像来发现其规律,利用其数据的可视化亲身体会函数序
列动态收敛的过程,进而阐明一致收敛的本质,探讨判定敛散性的新方法.
2预备知识
为了得到MATLAB对函数项级数一致收敛性判定的方法步骤、实验程序和实例应用,本文事先给出以
下几个引理.
引理1‘11
零.
引理2¨1 函数列{工(戈)}在数集D上一致收敛于八算)的充要条件是:
lim I工(戈)一八戈)I=0. (1)
sup
引理3… 函数项级数∑M。(石)在数集D上一致收敛于|s(髯)的充要条件是:
lim R。(戈)I=liml|s(石)一|s。(戈)I=0, (2)
suP sup
n咖#E正, n咖#E工J
其中.s(戈)=∑M。(戈),即级数的和函数;s。(茁)=∑M。(石),即级数的前凡项和.(下同)
引理4阳1 函数项级数∑M。(戈)在区间,上一致收敛于和函数|s(菇)的几何意义是,对任意给定的占>
z∈,,Is(算)
0,存在自然数Ⅳ=Ⅳ(占),当凡>Ⅳ(占)时,函数),=S。(菇)(戈∈,)的图像都落在带状区域{(z,y)I
一占
引理5‘31若函数项级数在某个区间不存在引理4中所提到的公共的Ⅳ=Ⅳ(占),就是非一致收敛.
现将一致收敛与非一致收敛进行对比如表1所示.
收稿日期:2016一06一14
+通讯作者,男,教授,硕士生导师
12
第4期 李苓玉,等:函数项级数一致收敛性及其应用 第31卷
3 MATLAB编程实现及应用
3.1 依必要条件编程实现 由引理l可得其逆否命题:若函数列{“。(戈)}在数集D上不一致收敛于零,则
函数项级数∑M。(z)在数集D上不一致收敛.据此,我们可对函数项级数的非一致收敛性进行判定.
3.1.1 一般步骤
1)
∑M。(z)不一致收敛.
2)
进而不一致收敛于零,则由引理1的逆否命题可知函数项级数∑u。(戈)不一致收敛.
3)
∑M。(戈)在数集D上不一致收敛;反之,则需要