原创
原题:http://lx.lanqiao.cn/problem.page?gpid=T125
问题描述
兰顿蚂蚁,是于1986年,由克里斯·兰顿提出来的,属于细胞自动机的一种。
平面上的正方形格子被填上黑色或白色。在其中一格正方形内有一只“蚂蚁”。
蚂蚁的头部朝向为:上下左右其中一方。
蚂蚁的移动规则十分简单:
若蚂蚁在黑格,右转90度,将该格改为白格,并向前移一格;
若蚂蚁在白格,左转90度,将该格改为黑格,并向前移一格。
规则虽然简单,蚂蚁的行为却十分复杂。刚刚开始时留下的路线都会有接近对称,像是会重复,但不论起始状态如何,蚂蚁经过漫长的混乱活动后,会开辟出一条规则的“高速公路”。
蚂蚁的路线是很难事先预测的。
你的任务是根据初始状态,用计算机模拟兰顿蚂蚁在第n步行走后所处的位置。
平面上的正方形格子被填上黑色或白色。在其中一格正方形内有一只“蚂蚁”。
蚂蚁的头部朝向为:上下左右其中一方。
蚂蚁的移动规则十分简单:
若蚂蚁在黑格,右转90度,将该格改为白格,并向前移一格;
若蚂蚁在白格,左转90度,将该格改为黑格,并向前移一格。
规则虽然简单,蚂蚁的行为却十分复杂。刚刚开始时留下的路线都会有接近对称,像是会重复,但不论起始状态如何,蚂蚁经过漫长的混乱活动后,会开辟出一条规则的“高速公路”。
蚂蚁的路线是很难事先预测的。
你的任务是根据初始状态,用计算机模拟兰顿蚂蚁在第n步行走后所处的位置。
输入格式
输入数据的第一行是 m n 两个整数(3 < m, n < 100),表示正方形格子的行数和列数。
接下来是 m 行数据。
每行数据为 n 个被空格分开的数字。0 表示白格,1 表示黑格。
接下来是一行数据:x y s k, 其中x y为整数,表示蚂蚁所在行号和列号(行号从上到下增长,列号从左到右增长,都是从0开始编号)。s 是一个大写字母,表示蚂蚁头的朝向,我们约定:上下左右分别用:UDLR表示。k 表示蚂蚁走的步数。
接下来是 m 行数据。
每行数据为 n 个被空格分开的数字。0 表示白格,1 表示黑格。
接下来是一行数据:x y s k, 其中x y为整数,表示蚂蚁所在行号和列号(行号从上到下增长,列号从左到右增长,都是从0开始编号)。s 是一个大写字母,表示蚂蚁头的朝向,我们约定:上下左右分别用:UDLR表示。k 表示蚂蚁走的步数。
输出格式
输出数据为两个空格分开的整数 p q, 分别表示蚂蚁在k步后,所处格子的行号和列号。
样例输入
5 6
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
2 3 L 5
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
2 3 L 5
样例输出
1 3
样例输入
3 3
0 0 0
1 1 1
1 1 1
1 1 U 6
0 0 0
1 1 1
1 1 1
1 1 U 6
样例输出
0 0
此题不难,整理一下蚂蚁的移动规则(特别要注意的是行号从上到下增长,列号从左到右增长):
当蚂蚁处于白色格子,判断蚂蚁处于哪种状态:
1. 蚂蚁头为 U ——> 蚂蚁头朝 L 前进一格
2. 蚂蚁头为 D ——> 蚂蚁头朝 R 前进一格
3. 蚂蚁头为 L ——> 蚂蚁头朝 D 前进一格
4. 蚂蚁头为 U ——> 蚂蚁头朝 U 前进一格
判断当前走了多少步
当蚂蚁处于黑色格子,判断蚂蚁处于哪种状态:
1. 蚂蚁头为 U ——> 蚂蚁头朝 R 前进一格
2. 蚂蚁头为 D ——> 蚂蚁头朝 L 前进一格
3. 蚂蚁头为 L ——> 蚂蚁头朝 U 前进一格
4. 蚂蚁头为 U ——> 蚂蚁头朝 D 前进一格
判断当前走了多少步
import java.util.Scanner; public class 兰顿蚂蚁 { static int arr[][]; static int k=0; //步数 static char Byte; static int total=0; //当前走的步数 static void Ants(int x,int y) { //(x,y)代表坐标 if(total==k) { System.out.print(x+" "+y); return; } if(arr[x][y]==0) { //白格(左转) arr[x][y]=1; //白转黑 if(Byte=='U') { //上 total++; Byte='L'; Ants(x,y-1); } else if(Byte=='D') { //下 total++; Byte='R'; Ants(x,y+1); } else if(Byte=='L') { //左 total++; Byte='D'; Ants(x+1,y); } else { //右 total++; Byte='U'; Ants(x-1,y); } } else { //黑格(右转) arr[x][y]=0; //黑转白 if(Byte=='U') { //上 total++; Byte='R'; Ants(x,y+1); } else if(Byte=='D') { //下 total++; Byte='L'; Ants(x,y-1); } else if(Byte=='L') { //左 total++; Byte='U'; Ants(x-1,y); } else { //右 total++; Byte='D'; Ants(x+1,y); } } } public static void main(String args[]) { Scanner reader=new Scanner(System.in); int m=0; int n=0; m=reader.nextInt(); //行 n=reader.nextInt(); //列 arr=new int[m][n]; int i=0; int j=0; for(i=0;i<=m-1;i++) { for(j=0;j<=n-1;j++) { arr[i][j]=reader.nextInt(); } } int x=0; //始横坐标 int y=0; //始纵坐标 x=reader.nextInt(); y=reader.nextInt(); String s=reader.next(); Byte=s.charAt(0); k=reader.nextInt(); /* for(i=0;i<=m-1;i++) { //测试输入数据 for(j=0;j<=n-1;j++) { System.out.print(arr[i][j]); } System.out.print('\n'); } System.out.print(x+"\t"+y+"\t"+Byte+"\t"+k); */ Ants(x,y); } }
(ACCEPT)
22:55:57
2018-06-12