poj 2001:Shortest Prefixes(字典树,经典题,求最短唯一前缀)

寻找字典中每个单词的最短唯一前缀
本文介绍了一个算法问题,即在给定的单词集合中,为每个单词找到其最短的唯一前缀。通过构建字典树,我们可以高效地解决这个问题,确保每个前缀在所有单词中都是独一无二的。
Shortest Prefixes
Time Limit: 1000MS Memory Limit: 30000K
Total Submissions: 12731 Accepted: 5442

Description

A prefix of a string is a substring starting at the beginning of the given string. The prefixes of "carbon" are: "c", "ca", "car", "carb", "carbo", and "carbon". Note that the empty string is not considered a prefix in this problem, but every non-empty string is considered to be a prefix of itself. In everyday language, we tend to abbreviate words by prefixes. For example, "carbohydrate" is commonly abbreviated by "carb". In this problem, given a set of words, you will find for each word the shortest prefix that uniquely identifies the word it represents. 

In the sample input below, "carbohydrate" can be abbreviated to "carboh", but it cannot be abbreviated to "carbo" (or anything shorter) because there are other words in the list that begin with "carbo". 

An exact match will override a prefix match. For example, the prefix "car" matches the given word "car" exactly. Therefore, it is understood without ambiguity that "car" is an abbreviation for "car" , not for "carriage" or any of the other words in the list that begins with "car". 

Input

The input contains at least two, but no more than 1000 lines. Each line contains one word consisting of 1 to 20 lower case letters.

Output

The output contains the same number of lines as the input. Each line of the output contains the word from the corresponding line of the input, followed by one blank space, and the shortest prefix that uniquely (without ambiguity) identifies this word.

Sample Input

carbohydrate
cart
carburetor
caramel
caribou
carbonic
cartilage
carbon
carriage
carton
car
carbonate

Sample Output

carbohydrate carboh
cart cart
carburetor carbu
caramel cara
caribou cari
carbonic carboni
cartilage carti
carbon carbon
carriage carr
carton carto
car car
carbonate carbona

Source

 
  字典树,经典题,求最短唯一前缀
  题意
  给你若干个单词的字典,求字典中每一个单词的最短唯一前缀。
  最短唯一前缀:找出这个单词中的一个前缀,要求这个前缀只在这个单词中出现过,并且要求这个前缀最短。
  思路
  实际上就是找字典树中 前缀数域 为1的位置,输出到这个位置为止的字符串。
  字典树这样定义,26个指向下一个位置的指针,1个num域,这个num代表以当前字符串为前缀的单词的数量。
  这样只要找到num==1的位置即可(到这个位置只有一个单词通过,说明到当前位置为止的字符串是唯一的)。
  代码
 1 #include <iostream>
 2 #include <stdio.h>
 3 #include <string.h>
 4 using namespace std;
 5 
 6 struct Tire{
 7     Tire *next[26];
 8     int num;    //记录以当前字符串为前缀的单词的数量
 9     Tire()    //构造函数初始化
10     {
11         int i;
12         for(i=0;i<26;i++)
13             next[i]=NULL;
14         num=0;
15     }
16 };
17 Tire root;
18 char word[1001][21];    //字典
19 
20 void Insert(char word[])    //将单词word插入到字典树中
21 {
22     Tire *p = &root;
23     int i;
24     for(i=0;word[i];i++){
25         int t = word[i] - 'a';
26         if(p->next[t]==NULL)
27             p->next[t]=new Tire;
28         p = p->next[t];
29         p->num++;
30     }
31 }
32 
33 void Find(char word[])    //找到单词word的最短唯一前缀并输出(假设一定存在,即查找num=1的位置,输出字符串)
34 {
35     Tire *p = &root;
36     int i;
37     for(i=0;word[i];i++){
38         int t = word[i]-'a';
39         if(p->next[t]==NULL)
40             return ;
41         p = p->next[t];
42         printf("%c",word[i]);
43         if(p->num==1) 
44             return;
45     }
46 }
47 
48 int main()
49 {
50     int size=1,i;    //字典大小
51     while(scanf("%s",word[size])!=EOF){
52         //if(word[size][0]=='0') break;
53         Insert(word[size++]);
54     }
55     size--;
56     for(i=1;i<=size;i++){    //查找每一个单词的最短唯一前缀
57         printf("%s ",word[i]);
58         Find(word[i]);
59         printf("\n");
60     }
61     return 0;
62 }

 

Freecode : www.cnblogs.com/yym2013

基于距离和密度的高斯核聚类算法研究(Matlab代码实现)内容概要:本文围绕基于距离和密度的高斯核聚类算法展开研究,提出了一种结合数据点间距离与局部密度特征的聚类方法,并通过Matlab代码实现该算法。该算法利用高斯核函数衡量样本间的相似性,引入密度信息以识别簇中心,有效提升了对复杂分布数据的聚类性能,尤其适用于非凸形状或噪声干扰下的数据集。文中详细阐述了算法原理、关键参数设置及其实现流程,并通过实验验证了其相较于传统聚类方法在准确性与鲁棒性方面的优势。; 适合人群:具备一定机器学习基础和Matlab编程能力的高校学生、科研人员及从事数据分析、模式识别等相关工作的技术人员。; 使用场景及目标:①用于处理具有复杂结构或噪声较多的实际数据聚类问,如图像分割、异常检测、客户分群等;②帮助理解密度-based与核方法相结合的聚类思想,掌握高斯核在聚类中的应用方式;③为改进现有聚类算法或开发新型聚类模型提供技术参考与实现基础。; 阅读建议:建议读者结合Matlab代码逐段理解算法实现细节,重点关注距离矩阵构建、密度计算与高斯核函数的应用部分,可通过调整参数并观察聚类结果变化加深对算法行为的理解,同时推荐在不同数据集上进行测试以评估算法泛化能力。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值