[Contest20180314]数列

数据范围告诉我们要写两档的分

第一档:$M\leq200,N\leq10^9$,可以枚举$m$计算答案

直接矩阵快速幂:$O\left(M^4\log_2N\right)$,会超时,所以我们需要某些“技巧”来加速这个过程:矩阵特征多项式

矩阵$A$的特征多项式为$f(\lambda)=\left|\lambda I-A\right|$

Cayley–Hamilton定理指出,如果将$A$作为自变量代入特征多项式,那么$f(A)=0$

证明过于复杂,请自行wikipedia或找书(估计这个坑不会填)

2018.4.6 来填坑

果然我一点都不懂线性代数,还是滚回去重新学吧==

1.把$n$阶行列式$a$划去第$i$行第$j$列,形成$n-1$阶行列式,称其为$a_{ij}$的余子式$A_{ij}$

2.如果行列式有两行相等,那么它的行列式为$0$

用数学归纳法,结论对二阶行列式显然成立,假设结论对$n-1$阶行列式成立,且$n$阶行列式$a$的第$i$行和第$j$行相等,选取一个$k$使得$k\ne i$且$k\ne j$,把$n$阶行列式按第$k$行展开,结果为$\begin{align*}\sum\limits_{l=1}^na_{kl}A_{kl}\end{align*}$,其中每个$A_{kl}$都是$n-1$阶行列式,且有两行相等,所以$A_{kl}=0$,即$a$的行列式为$0$

对列的证明类似

3.行列式某一行的元素乘另一行对应元素的余子式之和为$0$

对于原行列式$a=\left|\begin{matrix}a_{11}&\cdots&a_{1n}\\\vdots&&\vdots\\a_{i1}&\cdots&a_{in}\\\vdots&&\vdots\\a_{j1}&\cdots&a_{jn}\\\vdots&&\vdots\\a_{n1}&\cdots&a_{nn}\end{matrix}\right|$构造行列式$b=\left|\begin{matrix}a_{11}&\cdots&a_{1n}\\\vdots&&\vdots\\a_{i1}&\cdots&a_{in}\\\vdots&&\vdots\\a_{i1}&\cdots&a_{in}\\\vdots&&\vdots\\a_{n1}&\cdots&a_{nn}\end{matrix}\right|$,显然这个行列式值为$0$

因为两个行列式只有第$j$行不同,所以$A_{j1}\cdots A_{jn}$和$B_{j1}\cdots B_{jn}$全相同,对$b$按第$j$行展开,有$\begin{align*}\sum\limits_{k=1}^na_{ik}B_{jk}=0\end{align*}$,即$\begin{align*}\sum\limits_{k=1}^na_{ik}A_{jk}=0\end{align*}$

对列的证明类似

4.对于矩阵$A$,设其行列式$|A|$中$a_{ij}$的余子式为$A_{ij}$,定义$A$的伴随矩阵$A^*=\left[\begin{matrix}A_{11}&A_{21}&\cdots&A_{n1}\\A_{12}&A_{22}&\cdots&A_{n2}\\\vdots&\vdots&&\vdots\\A_{1n}&A_{2n}&\cdots&A_{nn}\end{matrix}\right]$,我们可以得到$A^*A=|A|I$(直接乘起来即可,主对角线的每一个位置是$|A|$的对应行元素乘对应行余子式,值为$|A|$,非对角线上的值由3可得是$0$)

5.于是我们可以证Cayley-Hamilton定理了

对$n$阶矩阵$A$,设$B(\lambda)$为$(\lambda I-A)$的伴随矩阵,$f(\lambda)=|\lambda I-A|$为$A$的特征多项式,则$B(\lambda)(\lambda I-A)=|\lambda I-A|I=f(\lambda)I$

先看左边,注意到$B$的每一个元素都是$|A|$的一个余子式,也就是$n-1$阶行列式,所以$B$的每一个元素都是关于$\lambda$的次数不超过$n-1$的一元多项式,我们把它写成$\begin{align*}B=\sum\limits_{i=0}^{n-1}\lambda^iB_i\end{align*}$,其中$B_i$是$n$阶矩阵,那么$\begin{align*}B(\lambda)(\lambda I-A)=\sum\limits_{i=0}^{n-1}\lambda^{i+1}B_i-\lambda^iB_iA\end{align*}$

再看右边,因为$\begin{align*}f(\lambda)=\sum\limits_{i=0}^na_i\lambda^i\end{align*}$,所以$\begin{align*}f(\lambda)I=\sum\limits_{i=0}^na_i\lambda^iI\end{align*}$

比较两个式子,把$\lambda^i$约掉,我们得到$\begin{cases}B_{n-1}=a_nI\\B_{n-2}-B_{n-1}A=a_{n-1}I\\\cdots\\B_0-B_1A=a_1I\\-B_0A=a_0I\end{cases}$

用$A^n\cdots I$依次乘上面式子的第$1\cdots n+1$项,我们得到$\begin{cases}B_{n-1}A^n=a_nA^n\\B_{n-2}A^{n-1}-B_{n-1}A^n=a_{n-1}A^{n-1}\\\cdots\\B_0A-B_1A^2=a_1A\\-B_0A=a_0I\end{cases}$

全部加起来,我们得到$f(A)=0$,就证完了

容易发现如果$A$是$m$阶矩阵,那么$f(\lambda)$是一个$m$次多项式

假如$g(x)=q(x)p(x)+r(x)$且$p(x)$是$m$阶矩阵$A$的特征多项式,并且$r(x)$的次数小于$p(x)$的次数,那么将$A$代入上式,得到$g(A)=r(A)$

也就是说,如果要计算$g(A)$,把$g(x)$对$A$的特征多项式取模得到的$r(x)$满足$r(A)=g(A)$

有什么用?假如$g(x)$的次数很大,使得我们难以计算$g(A)$,而$m$比较小,那么我们可以算出次数更小的$r(x)$,把问题转化为计算$r(A)$

对于常系数线性递推,我们要求数列$f$的第$n$项,如果转移矩阵是$A$,那么相当于求$A^{n-1}$,直接做是$O\left(m^3\log_2n\right)$的,如果我们先预处理出$f_{1\cdots m}$,用快速幂计算$r(\lambda)=\lambda^{n}\%f(\lambda)$再根据它的系数计算答案(不用把$A$代进去是因为$r(\lambda)$的次数$\lt m$,只需使用$f_{1\cdots m}$即可算出答案)

对于这题,$f_n=(a-1)\sum\limits_{k=1}^mf_{n-k}$,转移矩阵如下

$$A=\left[\begin{matrix}0&0&0&\cdots&0&a-1\\1&0&0&\cdots&0&a-1\\0&1&0&\cdots&0&a-1\\\vdots&\vdots&\vdots&\ddots&\vdots&\vdots\\0&0&0&\cdots&0&a-1\\0&0&0&\cdots&1&a-1\end{matrix}\right]$$

$$\begin{align*}f(\lambda)=\left|\lambda I-A\right|&=\left|\begin{matrix}\lambda&0&0&\cdots&0&1-a\\-1&\lambda&0&\cdots&0&1-a\\0&-1&\lambda&\cdots&0&1-a\\\vdots&\vdots&\vdots&\ddots&\vdots&\vdots\\0&0&0&\cdots&\lambda&1-a\\0&0&0&\cdots&-1&\lambda-a+1\end{matrix}\right|\\&=\left|\begin{matrix}\lambda&0&0&\cdots&0&1-a\\0&\lambda&0&\cdots&0&\frac{\lambda+1}\lambda(1-a)\\0&0&\lambda&\cdots&0&\frac{\lambda^2+\lambda+1}{\lambda^2}(1-a)\\\vdots&\vdots&\vdots&\ddots&\vdots&\vdots\\0&0&0&\cdots&\lambda&\frac{\lambda^{m-2}+\cdots+1}{\lambda^{m-2}}(1-a)\\0&0&0&\cdots&0&\lambda-a+1+\frac{\lambda^{m-2}+\cdots+1}{\lambda^{m-1}}(1-a)\end{matrix}\right|\\&=\lambda^m+(\lambda^{m-1}+\cdots+1)(1-a)\end{align*}$$

有些题目手算是算不出来的,需要插值

还有一些题目更加丧病,多项式取模和多项式乘法要求用NTT做,这个就看着办吧2333

枚举$m$,对于每个$m\lt M$如此计算,对于$m\geq M$,答案都是一样的,对$19260817$等比数列求和即可,我们在$O\left(M^3\log_2N\right)$的时间内解决此题

第二档:$M\leq10^9,N\leq3\times10^6$

这个就直接多了,直接推生成函数算出通项公式就好了

首先令$n\leq0$的$f_n=0$,因为$f_n-f_{n-1}=(a-1)(f_{n-1}-f_{n-m-1})$,所以$f_n=af_{n-1}-(a-1)f_{n-m-1}$

记$F_m(z)$为这个$m$下的$f$的生成函数(注意:以上变形的递推公式在$n=1$和$n=m+1$时不适用,应该补齐)

$$\begin{align*}F_m(z)&=\sum\limits_{i=0}f_iz^i\\F_m(z)&=az-az^{m+1}+\sum\limits_{i=0}\left[af_{i-1}-(a-1)f_{i-m-1}\right]z^i\\F_m(z)&=az-az^{m+1}+azF_m(z)-(a-1)z^{m+1}F_m(z)\\F_m(z)&=\dfrac{az-az^{m+1}}{1+(a-1)z^{m+1}-az}\end{align*}$$

把生成函数的分子提出来,分母先幂级数展开再用牛顿二项式定理展开

$$\begin{align*}F_m(z)&=\dfrac{az-az^{m+1}}{1+(a-1)z^{m+1}-az}\\&=\left(az-az^{m+1}\right)\sum\limits_{k=0}\left[az-(a-1)z^{m+1}\right]^k\\&=\left(az-az^{m+1}\right)\sum\limits_{k=0}\sum\limits_{j=0}^k\binom kj(1-a)^jz^{(m+1)j}a^{k-j}z^{k-j}\end{align*}$$

记$G_m(z)=\sum\limits_{k=0}\sum\limits_{j=0}^k\binom kj(1-a)^ja^{k-j}z^{k+jm}$,则$\left[z^n\right]F_m(z)=a\left[z^{n-1}\right]G_m(z)-a\left[z^{n-m-1}\right]G_m(z)$

现在来求$\left[z^n\right]G_m(z)$,令$k+jm=n$并枚举$j$,同时保证$k\geq j$即$n-jm\geq j$,得到$\left[z^n\right]G_m(z)=\sum\limits_{n-jm\geq j}\binom{n-jm}j(1-a)^ja^{n-jm-j}z^n$

对于所有$m,j$,因为$j(m+1)\leq n$,所以满足条件的$(j,m)$数量是$O\left(n\log_2n\right)$级别的,可以暴力算,时限7s很宽裕

于是就做完了,又学了一个神奇的东西==

#include<stdio.h>
#include<string.h>
typedef long long ll;
const int mod=998244353,ha=19260817;
int max(int a,int b){return a>b?a:b;}
int mul(int a,int b){return a*(ll)b%mod;}
int ad(int a,int b){return(a+b)%mod;}
int de(int a,int b){return(a-b)%mod;}
int pow(int a,int b){
	int s=1;
	while(b){
		if(b&1)s=mul(s,a);
		a=mul(a,a);
		b>>=1;
	}
	return s;
}
int M,a,N;
namespace sol1{
	struct poly{
		int x[410],n;
	};
	int m;
	poly operator+(poly a,poly b){
		poly c;
		c.n=max(a.n,b.n);
		for(int i=0;i<=c.n;i++)c.x[i]=ad(a.x[i],b.x[i]);
		return c;
	}
	poly operator*(poly a,poly b){
		poly c;
		int i,j;
		c.n=a.n+b.n;
		memset(c.x,0,sizeof(c.x));
		for(i=0;i<=a.n;i++){
			if(a.x[i]){
				for(j=0;j<=b.n;j++){
					if(b.x[j])c.x[i+j]=ad(c.x[i+j],mul(a.x[i],b.x[j]));
				}
			}
		}
		return c;
	}
	poly operator%(poly a,poly b){
		int i,j,t,inv;
		inv=pow(b.x[b.n],mod-2);
		for(i=a.n-b.n;i>=0;i--){
			t=mul(a.x[i+b.n],inv);
			for(j=0;j<=b.n;j++)a.x[j+i]=de(a.x[j+i],mul(b.x[j],t));
		}
		while(a.n>0&&a.x[a.n]==0)a.n--;
		return a;
	}
	poly id,one;
	poly pow(poly p,int k){
		poly res;
		res.n=0;
		res.x[0]=1;
		while(k){
			if(k&1)res=res*p%id;
			p=p*p%id;
			k>>=1;
		}
		return res;
	}
	int f[210];
	int F(){
		int i,s;
		id.n=m;
		for(i=0;i<m;i++)id.x[i]=1-a;
		id.x[m]=1;
		one.n=1;
		memset(one.x,0,sizeof(one.x));
		one.x[1]=1;
		one=pow(one,N-1);
		for(i=s=0;i<=one.n;i++)s=ad(s,mul(one.x[i],f[i+1]));
		return s;
	}
	void gao(){
		int i,s,bas;
		f[0]=1;
		for(i=1;i<=M;i++)f[i]=mul(f[i-1],a);
		s=0;
		for(m=bas=1;m<=M;m++){
			bas=mul(bas,ha);
			s=ad(s,mul(F(),bas));
		}
		printf("%d",s);
	}
}
namespace sol2{
	#define maxn 3000010
	int an[maxn],a1n[maxn],fac[maxn],rfac[maxn];
	int C(int n,int k){return mul(fac[n],mul(rfac[k],rfac[n-k]));}
	int G(int m,int n){
		int s,j;
		for(j=s=0;n-j*m>=j;j++)s=ad(s,mul(mul(C(n-j*m,j),a1n[j]),an[n-j*m-j]));
		return s;
	}
	int F(int m){
		return mul(a,de(G(m,N-1),G(m,N-m-1)));
	}
	void gao(){
		int i,res,bas;
		an[0]=a1n[0]=fac[0]=1;
		for(i=1;i<=N;i++){
			an[i]=mul(an[i-1],a);
			a1n[i]=mul(a1n[i-1],1-a);
			fac[i]=mul(fac[i-1],i);
		}
		rfac[N]=pow(fac[N],mod-2);
		for(i=N;i>0;i--)rfac[i-1]=mul(rfac[i],i);
		res=0;
		for(i=bas=1;i<N;i++){
			bas=mul(bas,ha);
			res=ad(res,mul(F(i),bas));
		}
		res=ad(res,mul(an[N],mul(de(pow(ha,M+1),pow(ha,N)),pow(ha-1,mod-2))));
		if(res<0)res+=mod;
		printf("%d",res);
	}
}
int main(){
	scanf("%d%d%d",&M,&a,&N);
	if(M>200)
		sol2::gao();
	else
		sol1::gao();
}

转载于:https://www.cnblogs.com/jefflyy/p/8577928.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值