
提到《二元一次方程组》这一章,有些老师会说:
“方程无非是概念、解法和应用这三部分嘛,基本技能加一些变形技巧,实际问题多练练,没什么难的,就不用你来点拨啦!”
这一章内容对于学生来说确实不算难,但我要给老师们提个醒:
这一章无论是从代数还是几何,都是重要的认知枢纽,在整个初中数学课程中有不可取代的地位。
为什么这么说呢?我有以下几个观点:
代入消元和加减消元不仅应用在解方程组,消元是一种广泛应用的代数变形策略,代入、加减不一定是为了消元;
与二元一次方程组有关的实际问题更加去题型化,不能再像讲实际问题与一元一次方程那样按题型分类训练,那样不利于发展学生的模型思想;
二元一次方程组的解有几种情况,这个探究可以也应该结合图形来认识。
以上观点其实把如何教好《二元一次方程组》这个问题分解成了三个问题:
如何让学生掌握消元的方法,而不只是技能?
如何让学生感悟模型思想,而不是训练题型战术?
如何让学生发展以形助数的视角,而不是给出数形结合的答案?
接下来我们就分别谈一谈这三个问题。
01
如何让学生掌握消元的方法
而不只是技能?
在这一章,二元一次方程是一个容易被忽视的对象。但如果你教过函数或带过中考,你一定知道用函数观点看方程对于初中阶段有多么重要。
作为二元一次方程的第一次登场,此处怎能无掌声?
为什么老师们不容易重视二元一次方程呢?
因为方程组的解法才是这一章的主角嘛!
但是仔细想想,代入消元法的第一步变形,难道不正是对二元一次方程进行变形吗?
有很多学生会在这里出现问题:移项符号搞错,分不清谁应该写在等号左边……这些都会成为方程组解法教学的绊脚石。
怎么解决这个看似小、实则痛的问题呢?在二元一次方程和它的解这里做一件事:
练习把二元一次方程改写成用x表示y的形式。比如:
将方程2x-y=3改写为y=2x-3。
这样做有什么意义呢?
至少有3个重要意义:
列举二元一次方程的解时,给x求y,使得对x的列举更有序,对y的求解更规范;
为代入消元法做技能准备;
为一次函数与二元一次方程的关系积累经验。
关于代入消元法和加减消元法的技能教学层面,这里就不多说了,提醒各位新教师用板书对一些步骤加以规范。
比如,代入后的部分要用括号括起来,如果前面系数是负数就更要小心:
再比如,加减消元符号容易出错的地方要圈出来:
以上是为了在代数教学中培养学生的“整体感”。
在解方程组的过程中,我们也可以设计一些方程的特点,相应产生的一些消元技巧,也有助于培养学生在消元方法中建立“整体感”,比如:
整体代入
加减化1
整体换元
比例换元
每一个技巧,不在于立刻掌握,但都要让学生体会:
代入和加减不一定是为了消去未知数,它们还可以作为简化问题的变形手段。
这样,学生对消元的理解就不是停留在代入消元、加减消元这样的技能层面,而是作为一种方法,在代数变形中有目的地选择变形策略。
02
如何让学生感悟模型思想
而不是训练题型战术?
说完从技能到方法的教学,咱们再来说说从训练战术到感悟思想。
实际问题在每一章方程、函数教学中都会遇到,其意义是持续感悟模型思想,也就是说让学生体会,学到的知识是可以解决生活中的问题的。
在一元一次方程的单元教研中,我们从“审”、“设”、“列”的角度重点介绍了如何教会学生列方程。
在一元一次方程那一章,学生还需要一点时间完成从算术到方程的过渡,为了让学生感受不同类型的实际问题在列方程过程中的特点,我们可以采用实际问题分类教学的策略。
但分类的最终目的不是分,而是“合”,也就是:
体会方程是刻画现实世界数量关系的有效模型。
具体说来就是三句话:
用“审”发现数量关系,
用“设”刻画现实世界,
用“列”建构有效模型。
在二元一次方程组这一章,我们还是要让学生感悟模型思想,那么这和教一元一次方程时有什么不同呢?
我的理解是,弱化“题型”,强化“模型”。
怎么强化呢?
学生应该对“审”“设”“列”这三步,分别形成三个更深入的理解,或者说是解决问题的策略。

这一点在一元一次方程中也提到过,表格的作用不只是帮助我们整理信息:
有时还能通过整理信息,发现隐藏的等量关系:
设:设谁是未知数,取决于相关数量关系中谁需要被表示并参与运算。
什么意思呢?
比如:
如何翻译“怎样划分”?总产量与单位面积产量、面积这两个量有关,单位面积产量给出了比值,但各自的面积是未知的,需要被表示;但面积又是用长×宽来表示的,如果竖着切一刀,那么两块长方形的宽都是AD,而长可以分别设成x和y,这样面积就可以用含x和y的式子表示。
再比如:
我们可以设销售款为x,但是根据题目条件,销售款是由单价×销售量得到的,而单价是已知的,因此设销售量为x更好。
审:等量关系不明显的一个原因是表示同一个量的两种形式都含有未知数,这意味着等量关系隐藏在更一般的数量关系或变化规律中。
什么叫更一般的数量关系或变化规律呢?
比如图中已知的线段可以用上下两种不同的方式表示:
再比如随着时间变化,匀速带来的相同时间间隔的距离是相等的:
为了满足老师们的教学需求,我们特意新设计制作了以上6节实际问题与二元一次方程组的课程,包含了人教、北师版教材中的大部分例题,供老师们在备课和教学时使用。
03
如何让学生发展以形助数的视角
而不是给出数形结合的答案?
我们前面刚讲完平面直角坐标系,学生知道它是数形结合的工具。
而二元一次方程组是一个代数研究对象,这意味着,我们可以用平面直角坐标系这个工具,探索这个代数对象是否有几何意义。
从数到形的关键,就是二元一次方程的每一个解,可以用有序数对表示,于是就对应了坐标系中的一个点。
这是多好的实践数形结合的素材啊!
于是人教版教材安排了这样一个数学活动:
有了这样的对应,再研究二元一次方程组有唯一解、有无数解和无解的情况,与两条直线的位置关系相对应,学生获得顿悟时刻,怎能不感叹数学之美妙!
我们经常跟学生说,这里体现了数形结合思想。
有一次我去观摩一位老师讲了一节平面直角坐标系的课,在最后复习的时候,她问了这样一个问题:这节课我们学到了什么数学思想啊?学生齐声回答:数形结合!
老师们,数学思想是在经验的基础上感悟的,不是靠标准答案喊出来的,这样的回答没有任何意义。
那么怎样才能把数形结合这样的数学思想“教”出来呢?
我们可以这样问:
回顾这节课的研究过程,我们是如何研究二元一次方程这个代数对象的?
二元一次方程的解是如何体现在坐标系中的?
二元一次方程的图象是怎么形成的?
你看,没有一个问题要求学生回答“数形结合”,但对每一个问题的思考,都有从数到形的过程。
数形结合是一种研究问题的视角。
在上面这个案例中,对这种思想的感悟,体现在学生是否能够意识到,当我们遇到一个代数问题时,可以考虑用平面直角坐标系这样的工具,转化为几何问题来解决。
结语
好了,我们总结一下今天的知识。
1、代入和加减不一定是为了消去未知数,它们还可以作为简化问题的变形手段。
2、对于实际问题与二元一次方程组的教学,可以重点让学生形成三个理解:
列:当题目中有较复杂的数量关系时,可以试着用表格梳理清楚数量关系,再列方程。
设:设谁是未知数,取决于相关数量关系中谁需要被表示并参与运算。
审:等量关系不明显的一个原因是表示同一个量的两种形式都含有未知数,这意味着等量关系隐藏在更一般的数量关系或变化规律中。
3、数学思想不是练出来或喊出来的,而是在实践经验的积累上悟出来的。
最后,我把对这一章的教学建议总结成一句顺口溜:
二元变形表其一,
消元化归练整体,
弱化题型重模型,
数形结合破玄机。
-END-
作者|马宁
编辑排版|洋葱君

往期精彩推荐
1.登封新区中强学校:以机房课模式推进信息技术融合课堂教学
2.“将军饮马”基本模型及其5大变式详解,你知道几种呢?(附可下载GGB课件)
3.“数学教学小白”的进阶:教育融合科技的威力令人意想不到
老师,点一下“在看”再走呗?


点击,立即报名成为洋葱HOPE卓越导师