转自:http://www.it165.net/admin/html/201404/2726.html
本文主要介绍5个典型的HDFS流程,这些流程充分体现了HDFS实体间IPC接口和stream接口之间的配合。
1. Client和NN
Client到NN有大量的元数据操作,比如修改文件名,在给定目录下创建一个子目录,这些操作一般只涉及Client和NN的交互,通过IPC调用ClientProtocol进行。创建子目录的逻辑流程如下图:
从图中可见,创建子目录这种操作并没有涉及DN。因为元数据会被NN持久化到edits中,因此在持久化结束之后,这个调用就会被成功返回。复习一下:NN维护了HDFS的文件系统目录树和文件与数据块的对应关系,和数据块与DN的对应关系。因此,创建目录仅仅是在NN上也就很容易理解了。
一些更为复杂的操作,如使用
1.
DistributedFileSystem.setReplication()
来增加文件的副本数,再如通过
1.
DistributedFileSystem.delete()
来删除HDFS上的文件,都需要DN配合执行一些动作。其中DistributedFileSystem源码在hadoop-hdfs-projecthadoop-hdfssrcmainjavaorgapachehadoophdfsDistributedFileSystem.java
01.
/****************************************************************
02.
* Implementation of the abstract FileSystem for the DFS system.
03.
* This object is the way end-user code interacts with a Hadoop
04.
* DistributedFileSystem.
05.
*
06.
*****************************************************************/
07.
@InterfaceAudience
.LimitedPrivate({
"MapReduce"
,
"HBase"
})
08.
@InterfaceStability
.Unstable
09.
public
class
DistributedFileSystem
extends
FileSystem {
10.
private
Path workingDir;
11.
private
URI uri;
12.
13.
DFSClient dfs;
14.
private
boolean
verifyChecksum =
true
;
15.
16.
static
{
17.
HdfsConfiguration.init();
18.
}
以客户端删除HDFS文件为例,操作在NN上执行完成后,DN存放的文件内容的数据块也必须删除。但是,NN在执行delete()方法时,它只标记需要删除的数据块(当然,delete的操作日志也会被持久化),而不会主动联系DN去立即删除这些数据。当保存着这些数据块的DN在向NN发送心跳时,NN会通过心跳应答携带DatanodeCommand命令来通知DN删除数据。也就是说,被删除的数据块在Client接到成功的响应后,会在一段时间后才能真正删除,NN和DN永远只维护简单的主从关系。NN永远不会主动发起向DN的调用。NN只能通过DN心跳应答中携带DatanodeCommand的指令对DN进行管理。
2. Client读文件
使用Java API读取文件的源码如下:
01.
FileSystem hdfs = FileSystem.get(
new
Configuration());
02.
Path path =
new
Path(
"/testfile"
);
// reading
03.
FSDataInputStream dis = hdfs.open(path);
04.
byte
[] writeBuf =
new
byte
[
1024
];
05.
int
len = dis.read(writeBuf);
06.
System.out.println(
new
String(writeBuf,
0
, len,
"UTF-8"
));
07.
dis.close();
08.
09.
hdfs.close();
下图显示了HDFS在读取文件时,Client,NN和DN发生的事件和这些事件的顺序:
步骤1的源码:
01.
public
FSDataInputStream open(Path f,
final
int
bufferSize)
02.
throws
IOException {
03.
statistics.incrementReadOps(
1
);
04.
Path absF = fixRelativePart(f);
05.
return
new
FileSystemLinkResolver<FSDataInputStream>() {
06.
@Override
07.
public
FSDataInputStream doCall(
final
Path p)
08.
throws
IOException, UnresolvedLinkException {
09.
return
new
HdfsDataInputStream(
10.
dfs.open(getPathName(p), bufferSize, verifyChecksum));
11.
}
12.
@Override
13.
public
FSDataInputStream next(
final
FileSystem fs,
final
Path p)
14.
throws
IOException {
15.
return
fs.open(p, bufferSize);
16.
}
17.
}.resolve(
this
, absF);
18.
}
可见open返回的是HdfsDataInputStream。dfs为hadoop-hdfs-projecthadoop-hdfssrcmainjavaorgapachehadoophdfsDFSClient.java。HdfsDataInputStream继承自FSDataInputStream。构造是并没有额外的处理。
1.
public
class
HdfsDataInputStream
extends
FSDataInputStream {
2.
public
HdfsDataInputStream(DFSInputStream in)
throws
IOException {
3.
super
(in);
4.
}
FSDataInputStream继承自DFSInputStream。
01.
DFSInputStream(DFSClient dfsClient, String src,
int
buffersize,
boolean
verifyChecksum
02.
)
throws
IOException, UnresolvedLinkException {
03.
this
.dfsClient = dfsClient;
04.
this
.verifyChecksum = verifyChecksum;
05.
this
.buffersize = buffersize;
06.
this
.src = src;
07.
this
.cachingStrategy =
08.
dfsClient.getDefaultReadCachingStrategy();
09.
openInfo();
10.
}
11.
12.
/**
13.
* Grab the open-file info from namenode
14.
*/
15.
synchronized
void
openInfo()
throws
IOException, UnresolvedLinkException {
16.
lastBlockBeingWrittenLength = fetchLocatedBlocksAndGetLastBlockLength();
17.
int
retriesForLastBlockLength = dfsClient.getConf().retryTimesForGetLastBlockLength;
18.
while
(retriesForLastBlockLength >
0
) {
19.
// Getting last block length as -1 is a special case. When cluster
20.
// restarts, DNs may not report immediately. At this time partial block
21.
// locations will not be available with NN for getting the length. Lets
22.
// retry for 3 times to get the length.
23.
if
(lastBlockBeingWrittenLength == -
1
) {
24.
DFSClient.LOG.warn(
"Last block locations not available. "
25.
+
"Datanodes might not have reported blocks completely."
26.
+
" Will retry for "
+ retriesForLastBlockLength +
" times"
);
27.
waitFor(dfsClient.getConf().retryIntervalForGetLastBlockLength);
28.
lastBlockBeingWrittenLength = fetchLocatedBlocksAndGetLastBlockLength();
29.
}
else
{
30.
break
;
31.
}
32.
retriesForLastBlockLength--;
33.
}
34.
if
(retriesForLastBlockLength ==
0
) {
35.
throw
new
IOException(
"Could not obtain the last block locations."
);
36.
}
37.
}
fetchLocatedBlocksAndGetLastBlockLength通过调用getLocatedBlocks实现了示意图中的步骤二:
01.
private
long
fetchLocatedBlocksAndGetLastBlockLength()
throws
IOException {
02.
final
LocatedBlocks newInfo = dfsClient.getLocatedBlocks(src,
0
);
03.
if
(DFSClient.LOG.isDebugEnabled()) {
04.
DFSClient.LOG.debug(
"newInfo = "
+ newInfo);
05.
}
06.
if
(newInfo ==
null
) {
07.
throw
new
IOException(
"Cannot open filename "
+ src);
08.
}
09.
10.
if
(locatedBlocks !=
null
) {
11.
Iterator<LocatedBlock> oldIter = locatedBlocks.getLocatedBlocks().iterator();
12.
Iterator<LocatedBlock> newIter = newInfo.getLocatedBlocks().iterator();
13.
while
(oldIter.hasNext() && newIter.hasNext()) {
14.
if
(! oldIter.next().getBlock().equals(newIter.next().getBlock())) {
15.
throw
new
IOException(
"Blocklist for "
+ src +
" has changed!"
);
16.
}
17.
}
18.
}
19.
locatedBlocks = newInfo;
20.
long
lastBlockBeingWrittenLength =
0
;
21.
if
(!locatedBlocks.isLastBlockComplete()) {
22.
final
LocatedBlock last = locatedBlocks.getLastLocatedBlock();
23.
if
(last !=
null
) {
24.
if
(last.getLocations().length ==
0
) {
25.
if
(last.getBlockSize() ==
0
) {
26.
// if the length is zero, then no data has been written to
27.
// datanode. So no need to wait for the locations.
28.
return
0
;
29.
}
30.
return
-
1
;
31.
}
32.
final
long
len = readBlockLength(last);
33.
last.getBlock().setNumBytes(len);
34.
lastBlockBeingWrittenLength = len;
35.
}
36.
}
37.
38.
currentNode =
null
;
39.
return
lastBlockBeingWrittenLength;
40.
}
你可能会说步骤二调用的是getBlockLocations。看以下的代码:
01.
@VisibleForTesting
02.
public
LocatedBlocks getLocatedBlocks(String src,
long
start,
long
length)
03.
throws
IOException {
04.
return
callGetBlockLocations(namenode, src, start, length);
05.
}
06.
07.
/**
08.
* @see ClientProtocol#getBlockLocations(String, long, long)
09.
*/
10.
static
LocatedBlocks callGetBlockLocations(ClientProtocol namenode,
11.
String src,
long
start,
long
length)
12.
throws
IOException {
13.
try
{
14.
return
namenode.getBlockLocations(src, start, length);
15.
}
catch
(RemoteException re) {
16.
throw
re.unwrapRemoteException(AccessControlException.
class
,
17.
FileNotFoundException.
class
,
18.
UnresolvedPathException.
class
);
19.
}
20.
}
然后就可以开始读文件的数据了。通过NameNode.getBlockLocations的远程调用接口获得了文件开始部分的数据块的保存位置。对于文件中的每个块,NN返回保存着该副本的DN的地址。注意,这些DN根据它们与Client的距离进行了简单的排序(利用了网络的拓扑信息)。
Client调用HdfsDataInputStream的read方法读取文件数据时,DFSInputStream对象会通过和DN间的读数据stream接口,和最近的DN建立连接。Client反复调用read方法,数据会通过DN和Client的连接上的数据包返回Client。当到达块的末端时,DFSInputStream会关闭和DN的连接。并通过getBlockLocations()远程方法获得保存着下一个数据块的DN信息,严格来说,在对象没有缓存该数据块的位置时,才会使用这个远程方法。这就是上图中的步骤五。然后重复上述过程。
另外,由于NameNode.getBlockLocations()不会一次返回文件的所有的数据块信息,DFSInputStream可能需要多次调用该远程方法,检索下一组数据块的位置信息。对于使用者来说,它读取的是一个连续的数据流,上面所讲的联系不同的DN,多次定位数据块的过程,都是透明的。当使用者完成数据读取任务后,通过FSDataInputStream.close()关系数据流。即图中的步骤六。
如果DN发生了错误,如节点停机或者网络出现故障,那么Client会尝试连接下一个Block的位置。同时它会记住出现故障的那个DN,不会再进行徒劳的尝试。在数据的应答中,不单包含了数据,还包含了数据的校验和,Client会检查数据的一致性,如果发现了校验错误,它会将这个信息报告给NN;同时,尝试从别的DN读取另外一个副本的内容。由Client在读取数据时进行数据完整性检查,可以降低DN的负载,均衡各个节点的计算能力。
这样的设计其实可以给我们一个很好的设计大型分布式系统的例子。通过一些有效的设计,将计算和网络等分散到各个节点上,这样可以最大程度的保证scalability。
3. Client写文件
即使不考虑出现错误的情况,写文件也是HDFS最复杂的流程。本节通过创建一个新文件并向文件写入数据,结束后关闭这个文件为例,分析文件写入时各个节点之间的配合。
Client调用DistributedFileSystem.create()创建文件(上图中的步骤一),这时DistributedFileSystem创建了DFSOutputStream,并由RPC,让NN执行同名的方法,在文件系统的命名空间创建一个新文件。NN创建新文件时,需要执行检查,包括NN是否处理正常工作状态,被创建的文件不存在,Client是否有在父目录中创建文件的权限等。通过检查后,NN会构建一个新文件,记录创建操作到编辑日志edits中。RPC结束后,DistributedFileSystem将该DFSOutputStream对象包装到FSDataOutputStream实例中,返回Client。
01.
@Override
02.
public
FSDataOutputStream create(
final
Path f,
final
FsPermission permission,
03.
final
EnumSet<CreateFlag> cflags,
final
int
bufferSize,
04.
final
short
replication,
final
long
blockSize,
final
Progressable progress,
05.
final
ChecksumOpt checksumOpt)
throws
IOException {
06.
statistics.incrementWriteOps(
1
);
07.
Path absF = fixRelativePart(f);
08.
return
new
FileSystemLinkResolver<FSDataOutputStream>() {
09.
@Override
10.
public
FSDataOutputStream doCall(
final
Path p)
11.
throws
IOException, UnresolvedLinkException {
12.
return
new
HdfsDataOutputStream(dfs.create(getPathName(p), permission,
13.
cflags, replication, blockSize, progress, bufferSize, checksumOpt),
14.
statistics);
15.
}
16.
@Override
17.
public
FSDataOutputStream next(
final
FileSystem fs,
final
Path p)
18.
throws
IOException {
19.
return
fs.create(p, permission, cflags, bufferSize,
20.
replication, blockSize, progress, checksumOpt);
21.
}
22.
}.resolve(
this
, absF);
23.
}
关键的调用点有DFSClient.create:
01.
/**
02.
* Same as {@link #create(String, FsPermission, EnumSet, boolean, short, long,
03.
* Progressable, int, ChecksumOpt)} with the addition of favoredNodes that is
04.
* a hint to where the namenode should place the file blocks.
05.
* The favored nodes hint is not persisted in HDFS. Hence it may be honored
06.
* at the creation time only. HDFS could move the blocks during balancing or
07.
* replication, to move the blocks from favored nodes. A value of null means
08.
* no favored nodes for this create
09.
*/
10.
public
DFSOutputStream create(String src,
11.
FsPermission permission,
12.
EnumSet<CreateFlag> flag,
13.
boolean
createParent,
14.
short
replication,
15.
long
blockSize,
16.
Progressable progress,
17.
int
buffersize,
18.
ChecksumOpt checksumOpt,
19.
InetSocketAddress[] favoredNodes)
throws
IOException {
20.
checkOpen();
21.
if
(permission ==
null
) {
22.
permission = FsPermission.getFileDefault();
23.
}
24.
FsPermission masked = permission.applyUMask(dfsClientConf.uMask);
25.
if
(LOG.isDebugEnabled()) {
26.
LOG.debug(src +
": masked="
+ masked);
27.
}
28.
String[] favoredNodeStrs =
null
;
29.
if
(favoredNodes !=
null
) {
30.
favoredNodeStrs =
new
String[favoredNodes.length];
31.
for
(
int
i =
0
; i < favoredNodes.length; i++) {
32.
favoredNodeStrs[i] =
33.
favoredNodes[i].getHostName() +
":"
34.
+ favoredNodes[i].getPort();
35.
}
36.
}
37.
final
DFSOutputStream result = DFSOutputStream.newStreamForCreate(
this
,
38.
src, masked, flag, createParent, replication, blockSize, progress,
39.
buffersize, dfsClientConf.createChecksum(checksumOpt), favoredNodeStrs);
40.
beginFileLease(src, result);
41.
return
result;
42.
}
在步骤三Client写入数据时,由于create()调用创建了一个空文件,所以,DFSOutputStream实例首先需要想NN申请数据块,addBlock()方法成功执行后,返回一个LocatedBlock对象。该对象包含了新数据块的数据块标识和版本好,同时,它的成员变量locs提供了数据流管道的信息,通过上述信息,DFSOutputStream就可以和DN连接,通过些数据接口建立数据流管道。Client写入FSDataOutputStream流中的数据,被分成一个一个的文件包,放入DFSOutputStream对象的内部队列。该队列中的文件包最后打包成数据包,发往数据流管道,流经管道上的各个DN,并持久化,确认包逆流而上,从数据流管道依次发往Client,当Client收到应答时,它将对应的包从内部队列删除。
01.
public
class
LocatedBlock {
02.
03.
private
ExtendedBlock b;
04.
private
long
offset;
// offset of the first byte of the block in the file
05.
private
DatanodeInfo[] locs;
06.
/** Storage ID for each replica */
07.
private
String[] storageIDs;
08.
// Storage type for each replica, if reported.
09.
private
StorageType[] storageTypes;
10.
// corrupt flag is true if all of the replicas of a block are corrupt.
11.
// else false. If block has few corrupt replicas, they are filtered and
12.
// their locations are not part of this object
13.
private
boolean
corrupt;
14.
private
Token<BlockTokenIdentifier> blockToken =
new
Token<BlockTokenIdentifier>();
15.
/**
16.
* List of cached datanode locations
17.
*/
18.
private
DatanodeInfo[] cachedLocs;
19.
20.
// Used when there are no locations
21.
private
static
final
DatanodeInfo[] EMPTY_LOCS =
new
DatanodeInfo[
0
];
DFSOutputStream在写完一个数据块后,数据流管道上的节点,会通过和NN的DatanodeProtocol远程接口的blockReceived()方法,向NN提交数据块。如果数据队列还有等到输出的数据,DFSOutputStream会再次调用addBlock(),为文件添加新的数据块。
Client完成数据的写入后,会调用close()方法关闭流,关闭流意味着Client不会再向流中写入数据。所以,当DFSOutputStream数据队列的文件包都收到应答后,就可以使用ClientProtocol.complete()方法通知NN关闭文件,完成一次正常的文件写入。
如果在文件写入期间DN发生故障,则会执行下面的操作(注意,这些操作对于写入数据的Client是透明的):
数据流管道会被关闭,已经发送到管道但是还没有收到确认的文件包,会被重新添加到DFSOutputStream的输出队列,这样就保证了无路数据流管道的哪个DN发生故障,都不会丢失数据。当前正常工作的DN的数据块会被赋予一个新的版本号,并通知NN。这样,失败的DN在从故障恢复过来以后,上面只有部分数据的Block会因为版本号和NN保存的版本号不匹配而被删除。在数据流管道中删除错误的DN并建立新的管道,继续写数据到正常工作的DN。文件关闭后,NN会发现该Block的副本数没有达到要求,会选择一个新的DN并复制Block,创建新的副本。DN的故障只会影响一个Block的写操作,后续Block的写入不会受到影响。
4. DataNode的启动与心跳机制
本节讨论DN的启动及其与NN之间的交互。包括DN从启动到进入正常工作状态的注册,Block上报,以及正常工作过程中的心跳等与NN相关的远程调用。这部分虽然只涉及DatanodeProtocol的接口,但是有助于进一步理解DN与NN的关系。
正常启动的DN或者为升级而启动的DN,都会向NN发送远程调用versionRequest(),进行必要的版本检查。这里的版本检查,只涉及构建版本号,保证它们间的HDFS版本是一致的。
在版本检查结束后,DN会接着通过远程调用register(),向NN注册。DatanodeProtocol.register()的主要工作也是检查,确认该DN是NN所管理集群的成员。也就是说,用户不能把某一个集群中的某个node直接注册到另外一个集群中去,保证了整个系统的数据一致性。
注册成功后,DN会将它所管理的所有Block的信息,通过blockRequest()方法上报到NN(步骤三),以帮助NN建立HDFS文件数据块到DN的映射关系。在此后,DN才正式的提供服务。
由于NN和DN是简单的主从关系,DN需要每隔一段时间发送心跳到NN(步骤四和步骤五)。如果NN长时间收不到DN的心跳,它会认为DN已经失效。如果NN需要一些DN需要配合的动作,则会通过sendHeartbeat()的方法返回。该返回值是一个DatanodeCommand数组,它是NN的指令。
应该说,DN和NN的交互逻辑非常简单。大部分是通过DN到NN的心跳来完成的。但是考虑到一定规模的HDFS集群,一个NN会管理上千个DN,这样的设计也就非常自然了。
5. SNN节点的元数据合并
当Client对HDFS的文件目录进行修改时,NN都会在edits中留下记录,以保证在系统出现问题时,通过日志可以进行恢复。
fsimage是某一个时刻的检查点(checkpoint)。由于fsimage很大,因此不会在每次的元数据修改都写入到它里边,而只是存在到edits中。在系统启动时,会首先状态最近时刻的fsimage,然后在通过edits,恢复系统的最新状态。
当时如果edits太大,那么节点启动时将用很长的时间来执行日志的每一个操作,使得系统恢复最近的状态。在启动恢复的这段时间,服务是不可用的。为了避免edits多大,增加集群的可用时间,HDFS引入了第二名字节点,即SNN(Secondary NameNode)。SNN不是NN的standby,它只是辅助NN完成合并(merge)fsimage和edits。过程涉及NamenodeProtocol和NN与SNN之间的流式接口。
该过程由SNN发起,首先通过远程方法NamenodeProtocol.getEditLogSize()获得NN上edits的大小。如果日志很小,SNN就会在指定的时间后重新检查。否则,继续通过远程接口rollEditLog(),启动一次检查点的过程。这时,NN需要创建一个新的编辑日志edits.new,后续对元数据的改动,都会记录到这个新日志中。而原有的fsimage和edits,会由SNN通过HTTP下载到本地(步骤三和步骤四),在内存中进行merge。合并的结果就是fsimage.ckpt。然后SNN通过HTTP接口通知NN fsimage已经准备好。NN会通过HTTP get获取merge好的fsimage。在NN下载完成后,SNN会通过NamenodeProtocol.rollFsImage(),完成这次检查点。NN在处理这个远程方法时,会用fsimage.ckpt 覆盖原来的fsimage,并且将新的edits.new改名为edit。