开源中文分词工具探析(四):THULAC

本文详细介绍了THULAC,一款高效的中文分词工具,它使用结构化感知器模型,通过DAT存储训练特征,提高了分词准确率。THULAC的分词模型涉及字符序列标注问题,采用Viterbi算法进行解码,并利用特征模板优化性能。
摘要由CSDN通过智能技术生成

THULAC是一款相当不错的中文分词工具,准确率高、分词速度蛮快的;并且在工程上做了很多优化,比如:用DAT存储训练特征(压缩训练模型),加入了标点符号的特征(提高分词准确率)等。


【开源中文分词工具探析】系列:

  1. 开源中文分词工具探析(一):ICTCLAS (NLPIR)
  2. 开源中文分词工具探析(二):Jieba
  3. 开源中文分词工具探析(三):Ansj
  4. 开源中文分词工具探析(四):THULAC
  5. 开源中文分词工具探析(五):FNLP
  6. 开源中文分词工具探析(六):Stanford CoreNLP
  7. 开源中文分词工具探析(七):LTP

1. 前言

THULAC所采用的分词模型为结构化感知器(Structured Perceptron, SP),属于两种CWS模型中的Character-Based Model,将中文分词看作为一个序列标注问题:对于字符序列\(C=c_1^n\),找出最有可能的标注序列\(Y=y_1^n\)。定义score函数\(S(Y,C)\)为在\(C\)的情况下标注序列为\(Y\)的得分。SP以最大熵准则建模score函数,分词结果则等同于最大score函数所对应的标注序列。记在时刻\(t\)的状态为\(y\)的路径\(y_1^{t}\)所对应的score函数最大值为

\[ \delta_t(y) = \max S(y_1^{t-1}, C, y_t=y) \]

那么,则有递推式

\[ \delta_{t+1}(y) = \max_{y'} \ \{ \delta_t(y') + w_{y',y} + F(y_{t+1}=y,C) \} \]

其中,\(w_{y',y}\)为转移特征\((y',y)\)所对应的权值,\(F(y_{t+1}=y, C)\)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值