matlab调用caffemex_【caffe-windows】 caffe-master 之 matlab接口配置

本文详细介绍了在Windows 10上配置Caffe Master与Matlab接口的步骤,包括修改设置文件、配置Matlab路径、解决编译错误、添加环境变量、复制DLL文件、设置模型和标签,并提供了运行示例代码的过程。
摘要由CSDN通过智能技术生成

平台环境: win10 64位 caffe-master  vs2013 Matlab2016a

第一步:

打开\caffe-master\windows下的CommonSettings.props文件,

更改MatlabSupport,改成true(即支持Matlab接口)。

如图:

645a352397ab913dae3d5a86eee59e12.png

第二步:

更改matlab的路径,

如图:

2a12f4ac68e4d485906611c38e7fe1f6.png

第三步:

在includepath中增加一个路径,若没有的话,在编译时候会出现如下错误:gpu/mxGPUArray.h" Not Found

复制这段code:

$(MatlabDir)\extern\include;$(MatlabDir)\toolbox\distcomp\gpu\extern\include;$(IncludePath)

如图:

a9cff9750d9861ac3ebca4f08a37a114.png

第四步:

打开caffe-master\windows 下的 Caffe.sln ,找到matcaffe,选择released(不要用debug),然后右键matcaffe,点击生成。

PS:不知道什么原因出错

错误    1   error : NuGet Error:Unable to find version‘2.4.10‘ of package ‘OpenCV.overlay-x64_v120_Release‘. D:\NugetPackages\OpenCV.2.4.10\build\native\OpenCV.targets  772 5  libcaffe

选择重新生成,可以解决。当然,没出错的同学忽略。

生成完毕后在caffe-master\Build\x64\Release\matcaffe\+caffe\private下会有文件 :caffe_.mexw64

第五步:

打开matlab,添加路径

如图:

7467c6043c58230f5649698b2244c57a.png

第六步:

添加系统环境变量,把..\caffe-master\Build\x64\Release  添加到系统环境变量中,如图:

f81efcd7971d4de3653f8b4c279bae7c.png

否者在运行 demo.m时候出会出现如下错误:

Invalid MEX-file‘D:\caffe-master\Build\x64\Release\matcaffe\+caffe\private\caffe_.mexw64‘: 找不到指定的模块。

出错 caffe.set_mode_cpu (line 5)

caffe_(‘set_mode_cpu‘);

出错 classification_demo (line 71)

caffe.set_mode_cpu();

第七步:

将caffe-master\Build\x64\Debug中所有dll文件全复制到caffe-master\matlab\+caffe\private

如图:

0d3511a5504c7441165afbd459a1994a.png

e1d259410eac6f8c1d323c6d71e40d7e.png

第八步:

下载model文件(bvlc_reference_caffenet.caffemodel)放到caffe-master\models\bvlc_reference_caffenet文件夹下

第九步:

下载标签文件:synset_words.txt ,放在与classification_demo.m同一个文件夹下

第十步:

打开classification_demo.m,运行。如果出现

未定义函数或变量 ‘caffe_‘。

出错 caffe.set_mode_cpu (line 5)

caffe_(‘set_mode_cpu‘);

出错 classification_demo (line 71)

caffe.set_mode_cpu();

请修改 第二条语句

addpath(‘../../Build/x64/Release/matcaffe‘);

第十一步:

下载链接:http://pan.baidu.com/s/1nvtwoBJ 密码:t71u

存放在与classification_demo.m同一个文件夹下

test_mat.m源码如下:

%参考http://www.aichengxu.com/view/2422137

clear

clc

im = imread(‘../../examples/images/cat.jpg‘);%读取图片

figure;imshow(im);%显示图片

[scores, maxlabel] = classification_demo(im, 0);%获取得分第二个参数0为CPU,1为GPU

maxlabel %查看最大标签是谁

figure;plot(scores);%画出得分情况

axis([0, 999, -0.1, 0.5]);%坐标轴范围

grid on %有网格

fid = fopen(‘synset_words.txt‘, ‘r‘);

i=0;

while ~feof(fid)

i=i+1;

lin = fgetl(fid);

lin = strtrim(lin);

if(i==maxlabel)

fprintf(‘the label of %d is %s\n‘,i,lin)

break

end

23. end

运行结果如图:

80202aa3c32108ee3ab0b373972e8c06.png

原文:http://www.cnblogs.com/TensorSense/p/6260284.html

好的,针对你的问题,这里简单介绍一下如何使用caffe-ssd预训练模型进行目标检测。 caffe-ssd是基于caffe框架实现的单阶段目标检测算法,使用预训练模型可以加快模型训练的速度,同时也可以提高模型的检测精度。下面是使用预训练模型做目标检测的步骤: 1. 下载预训练模型 caffe-ssd官方提供了一些预训练模型,可以在这里下载:https://github.com/weiliu89/caffe/tree/ssd#models。选择适合自己数据集的模型进行下载。 2. 准备数据集 准备自己的数据集,包括训练集、验证集和测试集。数据集需要满足SSD数据格式要求,即每个样本需要有对应的标注文件,标注文件格式为:类别id、xmin、ymin、xmax、ymax(例如:0 0.1 0.2 0.3 0.4,表示类别为0,左上角坐标为(0.1, 0.2),右下角坐标为(0.3, 0.4))。 3. 修改配置文件 修改caffe-ssd的配置文件,将模型路径、数据路径、类别数等参数配置正确。其中,模型路径需要指定为下载的预训练模型路径。 4. 训练模型 使用修改后的配置文件训练模型。训练过程中可以调整学习率、迭代次数等参数,以达到更好的效果。 5. 测试模型 使用测试集对训练好的模型进行测试,并计算模型在测试集上的精度和召回率等指标。 以上就是使用caffe-ssd预训练模型做目标检测的基本步骤。需要注意的是,使用预训练模型虽然可以加速模型训练过程,但是如果数据集和预训练模型的差异较大,仍然需要进行微调。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值