Wannafly挑战赛21:C - 大水题

链接:Wannafly挑战赛21:C - 大水题

题意:

现在给你N个正整数a i,每个数给出一“好数程度” g i(数值相同但位置不同的数之间可能有不同的好数程度)。对于在 i 位置的数,如果有一在j位置的数满足 j < i 且 a i=a j,则你可以将位于[i,j]闭区间内的序列评为“好序列”,然后获得∑g k(j≤k≤i)(此闭区间内“好数程度”之和)分数。

注意: 在所有情况下,每个数都只能被一个”好序列”包含(只能与其他相应数被评为”好序列”一次);在符合要求的情况下,”好序列”的评定次数不受限制,且通过不同”好序列”获得的分数可以累加。

题解:

sum[i] :前缀和。

dp[i] :当前最优解。

mp[a[i]] :假设 a[i] 在第 k 的位置,x 是前 k - 1 个数损失的最小值(即不能取的数的和的最小值),mp[a[i]] 就是前面出现的所有 a[i] 中 x 最小的那个 x。

那么就可进行状态转移:dp[i] = max(dp[i-1], sum[i] - mp[a[i]]) 。

注意如果前面没出现过 a[i] ,那么 mp[a[i]] = INF 。

#include <bits/stdc++.h>
using namespace std;

const long long INF = 1LL << 50;
const int maxn = 300000 + 10;
int n;
long long a[maxn], g[maxn];
long long dp[maxn], sum[maxn];
map<long long, long long> mp;

int main()
{
    scanf("%d", &n);
    for(int i = 1; i <= n; i++) scanf("%lld", &a[i]);
    for(int i = 1; i <= n; i++) scanf("%lld", &g[i]), sum[i] = sum[i-1] + g[i];

    for(int i = 1; i <= n; i++){
        if(!mp.count(a[i])) mp[a[i]] = INF;
        dp[i] = max(dp[i-1], sum[i] - mp[a[i]]);
        mp[a[i]] = min(mp[a[i]], sum[i-1] - dp[i-1]);
    }

    printf("%lld\n", dp[n]);

    return 0;
}

 

转载于:https://www.cnblogs.com/chenquanwei/p/9417836.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值