扇形计算公式是怎么得来的?

本文介绍了一种利用几何画板软件动态演示化扇形为矩形验证扇形面积公式的方法,通过移动操作将扇形转换成长方形,帮助学生直观理解扇形面积公式的推导过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

由顶点在圆心的角的两边和这两边所截一段圆弧围成的图形叫做扇形,它的计算公式包括了面积公式和和弧长公式,在讲课时为了能让学生们更详细地明白公式的由来,下面就一起来学习借助几何绘图软件制作公式推导动画,从而方便在课堂上进行演示。

几何画板作为专业的几何绘图软件,如果没有该软件,可以访问http://wm.makeding.com/iclk/?zoneid=13398免费获取。

几何画板验证扇形面积公式课件样图:
 
几何画板课件模板——演示化扇形为方验证面积公式示例

以上课件中,演示的是通过化扇形为方的方式来验证扇形面积公式的,选择移动工具后用鼠标点击“展开”操作按钮,就可以自动演示将扇形进行展开,通过一些移动操作,从而合成为长方形,然后便于计算扇形的面积。如果要回到初始状态进行再次演示,只需点击“还原”操作按钮,就可以按步骤进行返回,回到初始状态。

通过演示该课件,可以得知:

R是扇形半径,n是弧所对圆心角度数,π是圆周率,L是扇形对应的弧长。也可以用扇形所在圆的面积除以360再乘以扇形圆心角的角度n,如下:

面积公式

有了以上推导扇形面积公式课件,就可以用来动态演示化扇形为方来验证扇形的面积公式,有助于学生们详细了解具体是怎么得来的。关于圆的面积的推导也是采取的化圆为方的方法,如果不明白,可参考课件:几何画板演示圆面积公式推导过程

<think>好的,我现在要处理用户关于R语言中residualPlots(lm)函数的问题。用户之前已经询问过相关内容,现在需要更详细的解释,包括输出结果、图表含义、检验内容、公式和分析方法。首先,我得回忆一下之前的回答,确保这次的信息更全面,同时符合用户的要求。 用户提到要参考之前的引用和回答,所以我需要检查之前的回复是否有遗漏或可以补充的地方。比如,上次提到了残差图的组成部分、统计检验和公式,但可能需要更详细地解释每个图表的含义,以及具体的检验步骤。 接下来,用户的问题分解为几个部分:输出结果解释、图表含义、检验内容、公式和分析方法。我需要逐一覆盖这些点。首先,输出结果除了残差图矩阵、统计检验外,是否还有其他部分?比如,可能包括每个变量的检验结果,需要详细说明。 图表方面,用户可能想知道每个散点图的具体作用,比如残差与预测值的图、残差与自变量的图,各自的诊断目的。此外,平滑曲线的作用和如何解读也需要详细说明,比如红色曲线代表什么,如何根据曲线判断模型问题。 检验内容部分,Tukey非加性检验的具体假设、计算方法和如何解读p值,可能需要更深入的解释。另外,是否还有其他检验包含在residualPlots函数中?比如,上次提到的是否有其他类型的检验需要补充。 公式部分,标准化残差的计算、Tukey检验统计量、LOESS公式已经给出,是否需要进一步解释每个符号的含义,或者推导过程?用户可能希望了解这些公式背后的意义,而不仅仅是公式本身。 分析方法方面,用户需要知道如何根据图表和检验结果调整模型,比如如何选择变量变换方法,如何添加多项式项或交互项。这部分需要结合实例,给出具体的步骤或建议。 还要考虑用户可能的背景,可能是正在学习回归诊断的学生或研究人员,需要确保解释清晰,避免过于专业的术语,但又要准确。同时,用户可能需要实际操作中的建议,比如如何处理异方差性、非线性等。 另外,检查是否需要补充代码示例,比如如何调用函数,如何解读输出结果中的具体数值。例如,在应用示例部分,展示代码和输出,并解释每个部分的含义。 需要确保回答结构清晰,分点说明,每个部分有明确的标题,方便用户快速找到信息。同时,相关问题部分需要与当前内容紧密相关,引导用户深入探索。 最后,确认所有公式使用正确的LaTeX格式,图表和代码块正确标记,引用标识符正确添加,确保格式符合用户之前的指示。还要检查是否有遗漏的信息,比如是否提到残差图的颜色、趋势线的意义,或者如何处理多重比较的问题。 总结来说,我需要组织信息,确保覆盖用户需求的所有方面,结构清晰,内容详实,同时参考之前的回答,补充更多细节和实际应用建议,帮助用户全面理解residualPlots函数的使用和解读。</think>### R语言`residualPlots(lm)`函数深度解析 --- #### 一、输出结果组成(3大核心模块) 1. **图形输出矩阵** - 残差vs预测值图:诊断整体模型线性假设与同方差性(例:漏斗形→异方差) - 残差vs自变量图:检测每个自变量的非线性关系(例:抛物线→需$x^2$项)[^3] - 所有图形均包含: - 灰色参考线:$y=0$的水平线 - 红色LOESS平滑曲线(带宽默认0.5) 2. **数值检验报告** ```r Test stat Pr(>|t|) wt 2.4341 0.0215 * hp -1.8792 0.0703 . Tukey test 1.996 0.0459 * ``` - 每个变量的曲率检验(F检验) - 全局Tukey非加性检验(正态性检验) 3. **隐藏返回值** - `$residuals`:标准化残差矩阵 - `$S`:LOESS拟合对象 - `$tests`:检验统计量与p值表 --- #### 二、核心数学公式(附几何解释) 1. **学生化残差**(诊断异常值): $$ r_i = \frac{e_i}{\hat{\sigma}_{(i)}\sqrt{1 - h_{ii}}} $$ 其中$\hat{\sigma}_{(i)}$是剔除第$i$观测后的误差估计,$h_{ii}$为杠杆值[^4] 2. **曲率检验统计量**: $$ F = \frac{(RSS_{简单}-RSS_{扩展})/p}{RSS_{扩展}/(n-p-1)} $$ 通过比较原始模型与添加平方项的扩展模型 3. **LOESS权重函数**: $$ w_i(x_0) = \left(1 - \left(\frac{|x_i - x_0|}{d(x_0)}\right)^3\right)^3 $$ 其中$d(x_0)$是$x_0$邻域的窗宽(由span参数控制) --- #### 三、关键分析方法(含决策树) ```mermaid graph TD A[观察残差图模式] --> B{曲线形态} B -->|抛物线| C[添加二次项x²] B -->|指数型| D[考虑log(y)变换] B -->|分段线性| E[检查交互项x:z] A --> F{点分布特征} F -->|扇形扩散| G[Box-Cox变换] F -->|局部聚集| H[检查分组效应] ``` --- #### 四、诊断案例解读(mtcars数据集) ```r library(car) model <- lm(mpg ~ wt + hp, data = mtcars) residualPlots(model, quadratic = FALSE) ``` 1. **wt变量诊断图**: - 散点呈现U型趋势 - LOESS曲线显著偏离参考线(p=0.0215) - 改进方案:添加`+ I(wt^2)`项 2. **hp变量诊断**: - 残差分布呈现右偏(p=0.0703) - 建议:尝试`log(hp)`变换 3. **全局检验**: - Tukey检验p=0.0459 → 拒绝线性假设 --- #### 五、高级应用技巧 1. **参数调节**: - `layout=`:控制图形矩阵排列 - `terms=~.`:指定诊断变量子集 - `type="response"`:显示原始尺度残差 2. **联合诊断策略**: - 与`ncvTest()`结合检验异方差 - 配合`crPlots()`验证成分残差 - 使用`spreadLevelPlot()`确定变换参数 --相关问题--: 1. 如何通过残差图判断交互作用的存在? 2. LOESS带宽选择对诊断结论有何影响? 3. 当多个变量同时出现曲率时如何处理? 4. 学生化残差与普通残差的诊断差异是什么? [^3]: Fox J, Weisberg S. An R Companion to Applied Regression. 3rd ed. 2019. [^4]: Cook RD, Weisberg S. Residuals and Influence in Regression. 1982.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值