取快递的数学问题:手机尾号的重复概率

本文探讨了当有多个包裹时,存在两个包裹号码(手机尾号)相同的概率问题。通过数学公式和对数运算,解决了计算过程中浮点数溢出的问题,并给出了在不同数量包裹时的重复概率函数图像。虽然重复概率较大,但个人遭遇相同号码的情况相对较小。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

学校门口,四位手机尾号取快递。问:设有 \(n\) 个包裹,则存在两个包裹号码(收件人手机尾号,假设均匀分布)相同的概率 \(P(n)\) 是多少?

答曰:手机尾号一共有 \(10^4=10000\) 个,所以 \( P(n)=\frac{A_{10000}^n}{(10000)^n} \), 其中 \(A_n^r\) 为排列数。

求出表达式非常简单,然而计算具体值时却遇到了麻烦:分子和分母都太大了,IEEE 754 浮点数受不了了,直接扔给我个 Infinity.

怎么办呢?把排列数展开,取对数,乘除变加减:

\( \log{P(n)} \)

\( = \log{\frac{A_{10000}^n}{(10000)^n}} \)

\( =\log{A_{10000}^n}-n\log{10^4} \)

\( =\log{10^4(10^4-1)\cdots(10^4-n+1)}-4n\log{10} \)

\( =\log{10^4}+\log{(10^4-1)}+\cdots+\log{(10^4-n+1)}-4n\log{10} \)

不想这么麻烦的话,也有很精确的阶乘近似公式可用(这里就不限于整数了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值