题目如下:
Given a string
S
, count the number of distinct, non-empty subsequences ofS
.Since the result may be large, return the answer modulo
10^9 + 7
.
Example 1:
Input: "abc" Output: 7 Explanation: The 7 distinct subsequences are "a", "b", "c", "ab", "ac", "bc", and "abc".
Example 2:
Input: "aba" Output: 6 Explanation: The 6 distinct subsequences are "a", "b", "ab", "ba", "aa" and "aba".
Example 3:
Input: "aaa" Output: 3 Explanation: The 3 distinct subsequences are "a", "aa" and "aaa".
解题思路:记dp[i]为以S[i]元素结尾可以组成的子串的个数,很显然dp[0] = 1。显然dp[i]的前一个元素可以是dp[0] ~ dp[i-1]中的任何一个,那么应该有dp[i] = dp[0] + dp[1] +...dp[i-1]。这是对于元素没有重复的情况。假设S[j]是S[0-i]中与S[i]下标最接近的元素并且有S[i] = S[j],那么在以S[i]结尾的子串中,前一个元素是在S[0]~S[j-1]中的任何一个,都会和以S[j]结尾的子串中并且前一个元素是在S[0]~S[j-1]中的任何一个重复,因此这种情况下dp[i] = dp[j]+dp[j+1] + ... dp[i-1]。最后,返回的结果应该为sum(dp)。
代码如下:
class Solution(object): def distinctSubseqII(self, S): """ :type S: str :rtype: int """ dp = [1] * len(S) for i in range(1,len(S)): for j in range(i-1,-1,-1): if S[i] != S[j]: dp[i] += dp[j] else: dp[i] += dp[j] dp[i] -= 1 break #print dp return sum(dp) % (pow(10,9) + 7)