2019届宝鸡理数质检Ⅱ解析版

备选:

$A.\cfrac{\pi}{12}$ $B.\cfrac{\pi}{6}$ $C.\cfrac{\pi}{4}$ $D.\cfrac{\pi}{3}$
$A.\cfrac{1}{2}$ $B.\cfrac{1}{3}$ $C.\cfrac{1}{4}$ $D.\cfrac{1}{5}$

一、选择题:

例1【2019届宝鸡市高三理科数学质检Ⅱ第1题】

例2【2019届宝鸡市高三理科数学质检Ⅱ第2题】

分析:\(z=\cfrac{1+i}{(1-i)^2}=\cfrac{1+i}{-2i}\),故\(|z|=\cfrac{|1+i|}{|-2i|}=\cfrac{\sqrt{2}}{2}\)。故选\(B\)

例3【2019届宝鸡市高三理科数学质检Ⅱ第3题】

若直线\(x+(1+m)y-2=0\)与直线\(mx+2y+4=0\)平行,则\(m\)的值为【】

$A.1$ $B.-2$ $C.1或-2$ $D.-\cfrac{3}{2}$

分析:由题可知,\(\cfrac{1}{m}=\cfrac{m+1}{2}\neq \cfrac{-2}{4}\)①,具体求解时我们往往只利用下式求值,

\(\cfrac{1}{m}=\cfrac{m+1}{2}\)②,解得\(m=1\)\(m=-2\),由于刚才扩大了范围,故此时需要代入①式验证,

验证得到\(m=-2\)时不符,故\(m=1\),则选\(A\)

反思:满足②式的解不见得就一定满足①式,故不要忘记验证。补充直线平行或垂直的充要条件。

例4【2019届宝鸡市高三理科数学质检Ⅱ第4题】

例5【2019届宝鸡市高三理科数学质检Ⅱ第5题】

例6【2019届宝鸡市高三理科数学质检Ⅱ第6题】

分析:由题目可知,\(a=\sqrt{5}\),由椭圆的定义可知\(|DA|+|DB|=2\sqrt{5}\),由\(|PD|=|BD|\),故\(|AD|+|DP|=|AP|=2\sqrt{5}\)

即点\(P\)的轨迹是以点\(A(0,-2)\)为圆心,以\(|AP|\)为半径的圆,故其方程为\(x^2+(y+2)^2=20\),选\(C\)

例7【2019届宝鸡市高三理科数学质检Ⅱ第7题】

例8【2019届宝鸡市高三理科数学质检Ⅱ第8题】

992978-20190312205107835-723890680.jpg

分析:①由于\(AC\perp\)平面\(BDD_1B_1\)\(BE\subseteq\)\(BDD_1B_1\),则可知\(AC\perp BE\),故①正确;

②由于\(EF//BD\)\(BD\subseteq\)\(ABCD\)\(EF\not\subseteq\)\(ABCD\),则\(EF//\)\(ABCD\),故②正确;

\(V_{A-BEF}=\cfrac{1}{3}\cdot S_{\triangle BEF}\cdot h\)\(h\)即点\(A\)到平面\(BDD_1B_1\)的距离,是定值,而\(S_{\triangle BEF}=\cfrac{1}{2}\cdot EF\cdot h_0\)\(h_0\)\(BB_1\)为定值,且\(EF\)为定值,则三棱锥\(A-BEF\)的体积为定值,故③正确;

\(S_{\triangle BEF}=\cfrac{1}{2}\cdot EF\cdot h\)\(h=BB_1=1\),而\(S_{\triangle AEF}=\cfrac{1}{2}\cdot EF\cdot h_0\)\(h_0=\sqrt{1+(\cfrac{\sqrt{2}}{2})^2}\),由于两个三角形同底但不同高度,则\(S_{\triangle BEF}\neq S_{\triangle AEF}\),故④错误,

综上所述,选\(C\)

例9【2019届宝鸡市高三理科数学质检Ⅱ第9题】

例10【2019届宝鸡市高三理科数学质检Ⅱ第10题】

分析:由题可知,双曲线的\(a=2\),由双曲线的定义可知,\(|PF_1|-|PF_2|=2a=4\),即\(|PF_1|=|PF_2|+4\)

\(|PF|+|PF_1|=|PF|+|PF_2|+4\ge |FF_2|+4=\sqrt{3^2+4^2}+4=9\),故选\(C\)

反思:解决圆锥曲线问题,一定不要忘了使用定义式;两点之间线段最短,

例11【2019届宝鸡市高三理科数学质检Ⅱ第11题】

分析:将\(\alpha-\beta>sin\alpha-sin\beta\),等价转化为\(sin\beta-\beta>sin\alpha-\alpha\)

\(f(x)=sinx-x\),则\(f'(x)=cosx-1<0\),故\(f(x)\)\(R\)上单调递减,

故原命题等价于\(\alpha>\beta\)\(f(\beta)>f(\alpha)\)的什么条件,很显然是充要条件,故选\(A\)

例12【2019届宝鸡市高三理科数学质检Ⅱ第12题】

定义在\(R\)上的函数\(y=f(x)\),满足\(f(3-x)=f(x)\)\(f'(x)\)为函数\(f(x)\)的导函数,且\((x-\cfrac{3}{2})\cdot f'(x)<0\),若\(x_1<x_2\),且\(x_1+x_2>3\),则有【】

\(A.f(x_1)>f(x_2)\) \(B.f(x_1)=f(x_2)\) \(C.f(x_1)<f(x_2)\) \(D.不确定\)

分析:由\((x-\cfrac{3}{2})\cdot f'(x)<0\),得到当\(x>\cfrac{3}{2}\)时,必有\(f'(x)<0\),当\(x<\cfrac{3}{2}\)时,必有\(f'(x)>0\)

\(x\in (\cfrac{3}{2},+\infty)\)时,\(f'(x)<0\),函数\(f(x)\)单调递减,

\(x\in (-\infty,\cfrac{3}{2})\)时,\(f'(x)>0\),函数\(f(x)\)单调递增,

又由\(f(3-x)=f(x)\)得到函数的对称轴为\(x=\cfrac{3}{2}\)

在利用\(x_1<x_2\)\(x_1+x_2>3\)这一条件时,可以先考虑其临界状态以降低难度,

\(x_1+x_2=3\),则\(x_1\)\(x_2\)到对称轴等距离,则必有\(f(x_1)=f(x_2)\)

那么当\(x_1<x_2\)\(x_1+x_2>3\)时,必有\(x_1\)\(x_2\)分布在对称轴的两侧,且\(x_2\)距离对称轴更远,

故有\(f(x_1)>f(x_2)\),故选\(A\)

二、填空题:

例13【2019届宝鸡市高三理科数学质检Ⅱ第13题】

例14【2019届宝鸡市高三理科数学质检Ⅱ第14题】

例15【2019届宝鸡市高三理科数学质检Ⅱ第15题】

一个几何体的三视图如图所示,则该几何体的体积为_____________。

992978-20190311164127414-738397958.jpg

分析:由题目给定的三视图我们可以看出,原几何体的长、宽、高都是2,故我们先做一个正方体的模型备用,暂时不用标记顶点字母。

然后观察正视图中的所有顶点,将其顶点所落的正方体中的线段用红色标记并加粗,如下图所示;

992978-20190311164130257-99758052.jpg

然后观察左视图中的所有顶点,将其顶点所落的正方体中的线段用蓝色标记并加粗,如下图所示;

992978-20190311164136318-1623782717.jpg

再观察附视图中的所有顶点,将其顶点所落的正方体中的线段用绿色标记并加粗,如下图所示;

992978-20190311164140114-1415525567.jpg

最后,确定出原几何体的各个顶点。我们这样做,从图中找出来由三条有色加粗的线段交汇的点(如果仅仅由两个颜色的线段交汇的点舍弃不用),将得到的这些点相连就得到了如下图的几何体,至此,完成了由三视图到几何体的直观图的还原过程。

992978-20190311164147696-836763573.jpg

如图所示,连结\(BD\),则原几何体即可以看成一个三棱锥\(D_1-ABD\)和一个四棱锥\(B-CDD_1F\)合体构成的一个几何体,故其体积计算如下:

\(V=V_{三棱锥D_1-ABD}+V_{四棱锥B-CDD_1F}\)

\(=\cfrac{1}{3}\times \cfrac{1}{2}\times 2\times 2\times 2+\cfrac{1}{3}\times \cfrac{1}{2}\times(1+2)\times 2\times 2=\cfrac{10}{3}\)

例16【2019届宝鸡市高三理科数学质检Ⅱ第16题】

已知三角形的内角\(A、B、C\)所对的对边分别是\(a、b、c\),若\(a=\sqrt{2}\)\(b^2-c^2=6\),则角\(A\)最大时,三角形\(ABC\)的面积为_________。

分析:由\(cosA=\cfrac{b^2+c^2-a^2}{2bc}=\cfrac{b^2+c^2-2}{2bc}=\cfrac{b^2+c^2-\cfrac{b^2-c^2}{3}}{2bc}=\cfrac{b^2+2c^2}{3bc}\ge \cfrac{2\sqrt{2}}{3}\)

\(cosA\)的最小值为\(\cfrac{2\sqrt{2}}{3}\),当且仅当\(b=\sqrt{2}c\)\(b^2-c^2=6\),即\(b=2\sqrt{3}\)\(c=\sqrt{6}\)时取到等号;

此时\(A\)取到最大值,\(sinA=\cfrac{1}{3}\)

\(S_{\triangle ABC}=\cfrac{1}{2}bcsinA=\cfrac{1}{2}\times 2\sqrt{3}\times \sqrt{6}\times \cfrac{1}{3}=\sqrt{2}\)

反思:①常数代换,由\(2=\cfrac{6}{3}=\cfrac{b^2-c^2}{3}\),之所以做常数代换,是为了整理后便于使用均值不等式求\(cosA\)的最值。

②教师备用,也可以这样考虑,\(cosA=\cfrac{b^2+c^2-a^2}{2bc}\),即\(f(c)=\cfrac{2c^2+4}{2\sqrt{c^2+6}c}(c>0)\),求函数\(f(c)\)的最小值,如果想运算简单,还可以考虑求\(f(c)^2=\cfrac{(2c^2+4)^2}{4(c^2+6)c^2}(c>0)\)的最小值。

三、解答题:

例17【2019届宝鸡市高三理科数学质检Ⅱ第17题】【很容易检测学生的思路积累和运算能力的题目】

设数列\(\{a_n\}\)满足\(a_1=2\)\(a_{n+1}-a_n=2^n\);数列\(\{b_n\}\)的前\(n\)项和为\(S_n\),且\(S_n=\cfrac{1}{2}(3n^2-n)\)

(1).求数列\(\{a_n\}\)\(\{b_n\}\)的通项公式。

分析:求数列\(\{a_n\}\)的通项公式用累加法;

提示:\(a_n=2^n\)

求数列\(\{b_n\}\)的通项公式用\(b_n\)\(S_n\)的关系式法;

提示:\(b_n=3n-2\)

相关链接:求数列的通项公式\(a_n\)

(2).若\(c_n=a_n\cdot b_n\),求数列\(\{c_n\}\)的前\(n\)项和\(T_n\)

分析:\(c_n=a_n\cdot b_n=(3n-2)\cdot 2^n\),使用错位相减法求和。

提示:\(T_n=10+(3n-5)\cdot 2^{n+1}\).

求数列的前n项和\(S_n\)

例18【2019届宝鸡市高三理科数学质检Ⅱ第18题】

分析:先由题意得出甲公司的日工资函数\(f(x)=70+2x\)\(x\)为送餐单数;

乙公司的日工资函数\(g(x)=\left\{\begin{array}{l}{4x,x\leq 40}\\{160+(x-40)\cdot 6,x>40}\end{array}\right.\)\(x\)为送餐单数;

(1).令“这两天送餐单数都大于40”为事件\(A\)

\(P(A)=\cfrac{C_{20}^2}{C_{100}^2}=\cfrac{19}{495}\)

(2).①当\(x=38\)时,\(X=g(38)=152\)\(x=39\)时,\(X=g(39)=156\)\(x=40\)时,\(X=g(40)=160\)\(x=41\)时,\(X=g(41)=166\)\(x=42\)时,\(X=g(42)=172\)

\(X\)的所有可能取值为152,156,160,166,172,故\(X\)的分布列为

\(X\)152156160166172
\(P\)0.10.20.20.40.1

\(EX=152\times 0.1+154\times 0.2+160\times 0.2+166\times 0.4+172\times 0.1=162\)

②令甲公司的日工资为\(Y\),则当\(x=38\)\(39\)\(40\)\(41\)\(42\)时,分别得到\(Y=146\)\(148\)\(150\)\(152\)\(154\)

则仿上的解法,同样可以求得\(EY=146\times 0.2+148\times 0.4+150\times 0.2+152\times 0.1+154\times 0.1=149\)

由于\(EX>EY\),即乙公司的日工资的平均值要高于甲公司的日工资的平均值,故选择乙公司就业。

例19【2019届宝鸡市高三理科数学质检Ⅱ第19题】

例20【2019届宝鸡市高三理科数学质检Ⅱ第20题】

例21【2019届宝鸡市高三理科数学质检Ⅱ第21题】已知函数\(f(x)=lnx-\cfrac{ax}{x+1},(a\in R)\)

(1).讨论函数\(f(x)\)的单调性;

分析:定义域为\((0,+\infty)\)\(f(x)=lnx-\cfrac{ax}{x+1},(a\in R)\)

\(f'(x)=\cfrac{1}{x}-a\cdot \cfrac{(x+1)-x\cdot 1}{(x+1)^2}=\cfrac{1}{x}- \cfrac{a}{(x+1)^2}\)

\(=\cfrac{(x+1)^2-ax}{x\cdot (x+1)^2}=\cfrac{x^2+(2-a)x+1}{x\cdot (x+1)^2}\)

其中分子函数\(y=x^2+(2-a)x+1\),开口向上的抛物线,对称轴为\(x=-\cfrac{2-a}{2}=\cfrac{a}{2}-1\)

①当\(\Delta =(2-a)^2-4\leq 0\)时,即\(0\leq a\leq 4\)时,\(f'(x)\ge 0\)恒成立,此时在\((0,+\infty)\)上单调递增;

②当\(a<0\)时,对称轴为\(x=\cfrac{a}{2}-1<-1\)\(\Delta >0\)\(f(0)=1\),在\((0,+\infty)\)\(f'(x)>0\),故\((0,+\infty)\)\(f(x)\)单调递增;

③当\(a>4\)时,对称轴为\(x=\cfrac{a}{2}-1>1\)\(\Delta >0\)

\(x^2+(2-a)x+1=0\),则\(x=\cfrac{(a-2)\pm \sqrt{(a-2)^2-4}}{2\times 1}\)

\(x_1=\cfrac{(a-2)- \sqrt{(a-2)^2-4}}{2}\)\(x_2=\cfrac{(a-2)+\sqrt{(a-2)^2-4}}{2}\),则\(x_1<x_2\)

且有\(0<x_1<\cfrac{a}{2}-1\)\(x_2>\cfrac{a}{2}-1\),做出函数\(h(x)=x^2+(2-a)x+1\)的简图,由图可知,

\(x\in (0,x_1)\)时,\(f'(x)>0\)\(f(x)\)单调递增,

\(x\in (x_1,x_2)\)时,\(f'(x)<0\)\(f(x)\)单调递减,

\(x\in (x_2,+\infty)\)时,\(f'(x)>0\)\(f(x)\)单调递增,

综上所述,

\(a\leq 4\)时,函数\(f(x)\)\((0,+\infty)\)上单调递增,

\(a>4\)时,函数\(f(x)\)\((0,x_1)\)\((x_2,+\infty)\)上单调递增,在\((x_1,x_2)\)上单调递减。

(2).若函数\(f(x)\)有两个极值点\(x_1\)\(x_2\),证明:\(f(\cfrac{x_1+x_2}{2})<\cfrac{f(x_1)+f(x_2)}{2}\)

分析:由(1)知,\(a>4\),且有\(x_1+x_2=a-2\)\(x_1x_2=1\)

\(f(x_1)+f(x_2)=lnx_1-\cfrac{ax_1}{x_1+1}+lnx_2-\cfrac{ax_2}{x_2+1}\)

\(=lnx_1x_2-\cfrac{ax_1(x_2+1)+ax_2(x_1+1)}{(x_1+1)(x_2+1)}\)

\(=lnx_1x_2-a\cdot \cfrac{x_1x_2+x_1+x_2x_1+x_2}{x_1x_2+x_1+x_2+1}\)

\(=lnx_1x_2-a\cdot \cfrac{x_1x_2+x_1+x_2x_1+x_2}{x_1x_2+x_1+x_2+x_1x_2}\)

\(=ln1-a=-a\)

\(f(\cfrac{x_1+x_2}{2})=f(\cfrac{a-2}{2})=ln\cfrac{a-2}{2}-\cfrac{a\cdot \cfrac{a-2}{2}}{\cfrac{a-2}{2}+1}=ln\cfrac{a-2}{2}-(a-2)\)

\(f(\cfrac{x_1+x_2}{2})-\cfrac{f(x_1)+f(x_2)}{2}=ln\cfrac{a-2}{2}-a+2+\cfrac{a}{2}=ln\cfrac{a-2}{2}-\cfrac{a}{2}+2\)

\(h(a)=ln\cfrac{a-2}{2}-\cfrac{a}{2}+2(a>4)\),则\(h'(a)=\cfrac{2}{a-2}\cdot \cfrac{1}{2}-\cfrac{1}{2}=\cfrac{4-a}{2(a-2)}<0\)

\(h(a)\)\((4,+\infty)\)上单调递减,又\(h(4)=0\),所以\(h(a)<0=h(4)\)

所以\(f(\cfrac{x_1+x_2}{2})<\cfrac{f(x_1)+f(x_2)}{2}\)

反思:做差构造函数,利用导数判断新构造函数的单调性,从而证明不等式。

例22【2019届宝鸡市高三理科数学质检Ⅱ第22题】

(1).将\(\rho\cdot cos\theta=x\)\(\rho\cdot sin\theta=y\)代入方程\((x-2)^2+y^2=4\)

得到\((\rho cos\theta-2)^2+(\rho sin\theta)^2=4\),化简为\(\rho=4cos\theta,\theta\in [-\cfrac{\pi}{2},\cfrac{\pi}{2})\)

即曲线\(C_1\)的极坐标方程为\(C_1:\rho=4cos\theta\)

\(C_1\)上的动点的极坐标为\(P(\rho,\theta)\),则将点\(P\)沿着逆时针方向旋转\(90^{\circ}\)得到点\(Q(\rho_1,\phi)\)

则有\(\rho=\rho_1\)\(\phi=\theta+\cfrac{\pi}{2}\),即反解得到\(\rho=\rho_1\)\(\theta=\phi-\cfrac{\pi}{2}\)

将其代入曲线\(C_1\)的极坐标方程,得到\(\rho_1=4\cdot cos(\phi-\cfrac{\pi}{2})=4sin\phi\)

故曲线\(C_2\)的极坐标方程为\(C_2:\rho=4sin\phi,\phi\in [0,\pi)\)

总结:相关点法在极坐标系中的使用案例。

法2:由于点\((Rcos\theta,Rsin\theta)\),绕原点逆时针选择后得到点\((Rcos(\theta+\cfrac{\pi}{2}),Rsin(\theta+\cfrac{\pi}{2}))\),即得到\((-Rsin\theta,Rcos\theta)\)

\(C_1\)上的任意一点的坐标\(P(x,y)\),逆时针选择后得到点\(Q(m,n)=(-y,x)\)

\(m=-y\)\(n=x\),变换后得到\(x=n\)\(y=-m\),将其坐标代入方程\((x-2)^2+y^2=4\)

得到\((n-2)^2+m^2=4\),即\(C_2\)的普通方程为\(x^2+(y-2)^2=4\)

然后分别将\(C_1\)\(C_2\)的普通方程化为极坐标方程为:

曲线\(C_1\)的极坐标方程为\(C_1:\rho=4cos\theta\)

曲线\(C_2\)的极坐标方程为\(C_2:\rho=4sin\phi\)

法3:由于点\((Rcos\theta,Rsin\theta)\),绕原点顺时针选择后得到点\((Rcos(\theta-\cfrac{\pi}{2}),Rsin(\theta-\cfrac{\pi}{2}))\),即得到\((Rsin\theta,-Rcos\theta)\)

\(C_2\)上的任意一点的坐标\(Q(x,y)\),则其顺时针选择后得到点\(P(y,-x)\)

将点\(P(y,-x)\)的坐标代入方程\((x-2)^2+y^2=4\),得到\((y-2)^2+(-x)^2=4\),即\(C_2\)的普通方程为\(x^2+(y-2)^2=4\)

然后分别将\(C_1\)\(C_2\)的普通方程化为极坐标方程为:

曲线\(C_1\)的极坐标方程为\(C_1:\rho=4cos\theta\)

曲线\(C_2\)的极坐标方程为\(C_2:\rho=4sin\phi\)

法4:曲线\(C_1\)的普通方程为\((x-2)^2+y^2=4\),即圆心在点\((2,0)\)半径为\(2\)的圆,将其整体图形逆时针旋转\(\cfrac{\pi}{2}\),圆的半径不变,但是圆心变为\((0,2)\),故曲线\(C_2\)的普通方程为\(x^2+(y-2)^2=4\),其余自己整理。

(2).在极坐标中,由\(\left\{\begin{array}{l}{\rho=4cos\theta}\\{\theta=\cfrac{\pi}{3}}\end{array}\right.\)解得\(\rho_A=2\),同理解得\(\rho_B=2\sqrt{3}\)

由极坐标系下的同极角的弦长公式可得,\(|AB|=|\rho_A-\rho_B|=2\sqrt{3}-2\)



过点\(M\)做直线\(\theta=\cfrac{\pi}{3}\)的垂线,由直角三角形可以得到\(\triangle MAB\)的高为\(h=\sqrt{3}\)

\(S_{\triangle MAB}=\cfrac{1}{2}\times (2\sqrt{3}-2)\times \sqrt{3}=3-\sqrt{3}\)

例23【2019届宝鸡市高三理科数学质检Ⅱ第23题】

转载于:https://www.cnblogs.com/wanghai0666/p/10502259.html

基于STM32F407,使用DFS算法实现最短迷宫路径检索,分为三种模式:1.DEBUG模式,2. 训练模式,3. 主程序模式 ,DEBUG模式主要分析bug,测量必要数据,训练模式用于DFS算法训练最短路径,并将最短路径以链表形式存储Flash, 主程序模式从Flash中….zip项目工程资源经过严格测试可直接运行成功且功能正常的情况才上传,可轻松复刻,拿到资料包后可轻松复现出一样的项目,本人系统开发经验充足(全领域),有任何使用问题欢迎随时与我联系,我会及时为您解惑,提供帮助。 【资源内容】:包含完整源码+工程文件+说明(如有)等。答辩评审平均分达到96分,放心下载使用!可轻松复现,设计报告也可借鉴此项目,该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的。 【提供帮助】:有任何使用问题欢迎随时与我联系,我会及时解答解惑,提供帮助 【附带帮助】:若还需要相关开发工具、学习资料等,我会提供帮助,提供资料,鼓励学习进步 【项目价值】:可用在相关项目设计中,皆可应用在项目、毕业设计、课程设计、期末/期中/大作业、工程实训、大创等学科竞赛比赛、初期项目立项、学习/练手等方面,可借鉴此优质项目实现复刻,设计报告也可借鉴此项目,也可基于此项目来扩展开发出更多功能 下载后请首先打开README文件(如有),项目工程可直接复现复刻,如果基础还行,也可在此程序基础上进行修改,以实现其它功能。供开源学习/技术交流/学习参考,勿用于商业用途。质量优质,放心下载使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值