离散傅里叶的基础知识和理解

傅里叶变换的基本思想是将一个时间域信号表示为一组正弦波的线性组合。

  1. DFT的公式

    • X ( ω ) = ∑ n = 0 L − 1 x ( n ) e − j ω n X(\omega) = \sum_{n=0}^{L-1} x(n) e^{-j\omega n} X(ω)=n=0L1x(n)ejωn

    傅里叶变换的目的就是通过这些离散的频率点 ω k \omega_k ωk分析信号中存在哪些频率成分,以及各个频率成分的幅值和相位。

  2. 例子解释

  3. 问题

    • 傅里叶变换的幅度谱告诉我们信号在各个频率上的能量大小。
    • 直流信号是指所有点的值都相同的信号,比如 x ( n ) = [ 2 , 2 , 2 , 2 ] x(n) = [2, 2, 2, 2] x(n)=[2,2,2,2]
    • 对于非周期的、连续时间信号,频域是连续的;
      但是一旦信号被采样(数字化),频域变成了周期性的。

1. 离散傅里叶变换 (DFT)

首先,给定一组有限的时间序列 x ( n ) x(n) x(n),定义域为 0 ≤ n < L 0 \leq n < L 0n<L,这意味着我们有 L L L 个采样点。我们通过离散傅里叶变换 (Discrete Fourier Transform, DFT) 来将该序列从时间域转换到频率域。

DFT 的一般公式如下:

X ( ω ) = ∑ n = 0 L − 1 x ( n ) e − j ω n X(\omega) = \sum_{n=0}^{L-1} x(n) e^{-j\omega n} X(ω)=n=0L1x(n)ejωn

公式分解

  • x ( n ) x(n) x(n):这是在时间域中的信号或数据序列。每个 x ( n ) x(n) x(n) 是信号在第 n n n 个采样点处的值。
  • e − j ω n e^{-j\omega n} ejωn:这是一个复指数函数,它与傅里叶变换的核心概念相关。傅里叶变换使用复指数函数来捕捉信号中的频率成分,其中 ω \omega ω 是角频率, j j j 是虚数单位 j = − 1 j = \sqrt{-1} j=1 。这里的指数形式 e − j ω n e^{-j\omega n} ejωn 代表一个旋转因子,可以理解为不同频率分量在复平面上的旋转。
  • 求和符号 ∑ \sum :表示对所有 n n n 从 0 到 L − 1 L-1 L1 的时间点进行求和,累积所有时域信号对频域信号的贡献。通过对每个 x ( n ) x(n) x(n) 乘以对应的旋转因子 e − j ω n e^{-j\omega n} ejωn,我们可以计算出频域信号在给定角频率 ω \omega ω 下的值。

详细理解:

  1. 频域表示 X ( ω ) X(\omega) X(ω) 是信号在频域中的表示,它告诉我们信号在不同频率上的成分。通过傅里叶变换,我们将时域中的信号分解为不同频率分量的组合。

  2. 有限采样与周期性:因为我们只考虑有限长度的序列 x ( n ) x(n) x(n),我们得到的是离散傅里叶变换(而不是连续傅里叶变换),它假设信号是周期性的。换句话说,假设信号 x ( n ) x(n) x(n) 在区间 0 ≤ n < L 0 \leq n < L 0n<L 之外是周期重复的。

  3. 频率 ω \omega ω ω \omega ω

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值