模素数$p$乘法与模素数$p$加法形成的有限域

Suppose $p$ is a positive prime number,we now define a binary operation $\bigotimes$:If $rs\equiv t (\hbox{mod}p)(0\leq t\leq p-1)$,then we say $r\bigotimes s=t$.

 


Theorem : $(\{1,2,...,p-1\},\bigotimes)$ is a group.



Proof: We want to prove $(\{1,2,...,p-1\},\bigotimes)$ is a group,which means that

 

1.$\forall a,b\in \{1,2,...,p-1\}$,we have $a\bigotimes b\in \{1,2,...,p-1\}$.


2.$\forall a,b,c\in \{1,2,...,p-1\}$,we have $(a\bigotimes b)\bigotimes c=a\bigotimes (b\bigotimes c)$.


3.There is an identity element $e\in \{1,2,...,p-1\}$ such that $\forall a\in \{1,2,...,p-1\}$,we have $e\bigotimes a=a\bigotimes e=a$.


4.There is an inverse for every member of $\{1,2,...,p-1\}$ ,which means that $\forall a\in \{1,2,...,p-1\}$,we have $a^{-1}\in \{1,2,...,p-1\}$ such that $a\bigotimes a^{-1}=a^{-1}\bigotimes a=e$.

 

Property 1 can be easily verified as follows : $a\bigotimes b$ must not be 0.(otherwise,$p|ab$.Because $p$ is a prime number,so either $p|a$ or $p|b$.But we know that both $a$ and $b$ are less than $p$,so it is impossible).So $a\bigotimes b\in \{1,2,...,p-1\}$.As for property 3, it is very easy to verify that $e=1$.In order to prove property 2,we need three lemmas.

 

lemma 1: $a\bigotimes b=b\bigotimes a$.

 

Proof:Trival.

 

lemma 2: $(a\bigotimes 1)\bigotimes c=(ac)\bigotimes 1=a\bigotimes c$.

 

Proof:Trival.

 

lemma 3: $(a\bigotimes b)\bigotimes c=(abc)\bigotimes 1$.

 

According to lemma 2,$(abc)\bigotimes 1=(ab\bigotimes 1)\bigotimes c=((a\bigotimes 1)\bigotimes b)\bigotimes c=(a\bigotimes b)\bigotimes c$.$\Box$

 

 

According to the above three lemmas,property 2 can be easily proved(How?).Now we prove property 4.In order to prove property 4,we need lemma 4.

 

lemma 4:If $1\leq i<j\leq p-1$,then $\forall n\in \{1,2,...,p-1\}$,we have $i\bigotimes n\neq j\bigotimes n$.

 

Proof:Otherwise,$i\bigotimes n=j\bigotimes n$.Let $in=k_1p+t_1,jn=k_2p+t_1$.So $(j-i)n=(k_2-k_1)p$.Because $p$ is prime,so $p|n$ or $p|(j-i)$.But $n<p$,$j-i<p$,so it is impossible.

 

Now it is the right time to prove property 4:We have the following p-1 sequences :

$$
\left(
\begin{array}{cccc}
1\bigotimes 1&2\bigotimes 1&\cdots&(p-1)\bigotimes 1\\
1\bigotimes 2&2\bigotimes 2&\cdots&(p-1)\bigotimes 2\\
\vdots&\vdots&\vdots&\vdots\\
1\bigotimes (p-1)&2\bigotimes (p-1)&\cdots&(p-1)\bigotimes (p-1)
\end{array}
\right)
$$

We can regard these $p-1$ sequences as a matrix which has $p-1$ columns and $p-1$ rows.The first column of the matrix ,according to lemma 4,is consisted by $p-1$ different numbers in $\{1,2,...,p-1\}$.Thus there must be only one number in this column which is equal to 1.The second column of the matrix is also consisted by $p-1$ different numbers in $\{1,2,...,p-1\}$.Thus there must be only one number in this column which is equal to  1.Apply similar to every column,it can be verified that there must be only one number in each column be 1.Thus the property 4 is proved. $\Box$.

 

转载于:https://www.cnblogs.com/yeluqing/archive/2012/11/09/3827748.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值