作者:香川群子

原文地址:http://www.6sq.net/thread-178075-1-1.html

开始学习。

首先,对一个可测量的计量型品质特性值,
我们知道由于世界上不存在完全一样的东西,
那么当测量精度足够时,
N个对象就可以得到N个不完全相同的计量数值。

对于这一组不同的对象数值,
我们希望知道他们的均匀性或者说差异特性,
以便了解对象品的整批批次特性,
并且希望是得到定量而不只是定性的评价结果。
这样就产生了数学评估的要求。


我们前辈的数学研究,首先发现了平均值,
即数值总和除以样本数。
这个数学平均值可以大致告诉我们,
该特定批次的整体水平,和基准要求的差异,
如果平均值比基准大,那么我们一般可以认为整批物品中,
大于基准的多一些。反之,如果平均值小,那么小于基准的会多一些。

且慢,真的都是这样子的吗?

我们长期的经验发觉,如果该批次物品特性值不是自然均匀分布的话,
即如果个别值特别大或特别小,那么平均值将被显著拉高或压低。
(如,一个自然村中出了一个千万富翁,那么村里大家的平均资产都可能一下子超过实际几倍。)

为此,首先引入了中位值的概念,作为参照。

但是,发觉中位值的作用很有限呢……。


于是继续研究,很快,人们发现,
可以计算一下每个个体值和平均值的差,称“均差”
立即就能发现,个体和平均值之间的差异有多大了。

可是,这样做是对每个个体的评估,
如果要只用一个数值指标来评估的话,那该怎么办呢?


于是,首先想到了把“均差”进行数学平均计算,
但是,很遗憾地发现,如果是几何对称分布的话,
那么“均差”的数学平均值可能趋近于零,而该批次的均匀性却仍然很差。

为什么会这样子呢?
因为“均差”本身有正有负,直接作数学平均的话,差异会相互抵消。

怎么办哪?急死人了!

偶然中,有人想到了平方运算的取正作用,
把每个“均差”平方运算以后,再取其数学平均值,
即“均差”的总和除以样本数,(这个尚不是现在的标准方差)
呵呵,很理想地找到了这个评估值和样本差异性之间的线性相关……。

后来,数学家为了保证计算值和实际值的单位统一,
(这个值和实际值的单位是平方关系。)
因此提出了把这个值再开平方一次,以保证它仍然是一次幂单位……。

至此,标准方差正式诞生了。


标准方差的计算公式是:
1。求每一个数与这个样本数列的数学平均值之间的差,称均差;
2。计算每一个差的平方,称方差;
3。求它们的总和,再除以这个样本数列的项数得到均方差;
4。再开根号得到标准方差!


分析:
标准方差主要和分母(项数)、分子(无极性偏差)有直接关系!
这里的偏差为每一个数与平均值的差异,平方运算后以去除正负极性。
为保持单位一致,再开方运算。


几个适用的理解:
1.数据整体分布离平均值越近,标准方差就越小;
数据整体分布离平均值越远,标准方差越大。
(标准方差和差异的正相关)


2.特例,标准方差为0,意味着数列中每一个数都相等。
(一组平方数总和为零时,每一个平方数都必须为零)


3.序列中每一个数都加上一个常数,标准方差保持不变!
(方差本身是数值和平均值之间作比较,常数已被相互抵消。)


4。标准方差主要反映的是数列整体对于数学平均值的偏移分布特性,
不论它是往那个方向。


5。个别值对数学平均值的偏移越大,对标准方差的值的增大贡献越大。
并且这个贡献是由于平方运算而被显著化(扩大化)了的。


6。即使数学平均值和标准方差值都相同,但两个实际数列对数学平均值的几何分布也有可能不同。


7。仅当两个数列的几何分布相同或类似时,用标准方差来评估他们的差异是比较可行的。


8。由于假定大部分情况下,对象的几何分布是随机正态分布的,
因此,用标准方差的大小来评估他们的组内数据差异是可行的。


9。……待增补。
一下子写这么多,挺累的。

这是我自己对标准方差评估方法产生的一个推测,错误地方也许很多,请指正。

因此,我的理解,标准方差虽然是对客观数列的一个客观评估方式,
但它本身就是人为规定的一种方法,不能完全称之为绝对科学内容。

随着人类科学的进步,今后也许可以发明更理想的评估方式。

呵呵。