《第七章 自相关(计量经济学)》由会员分享,可在线阅读,更多相关《第七章 自相关(计量经济学)(56页珍藏版)》请在人人文库网上搜索。
1、自相关SerialCorrelation,1,自相关2,自相关结果3,自相关4,带自相关模型的估计5,案例,模型中的随机误差项违反彼此独立的基本假设时称为自相关。OLS(一般最小平方)要求计量模型中的随机误差项目彼此独立或未与系列关联。第一,自相关,1,自相关的概念,对于其他采样点,随机误差项之间不再相关,但如果有任何相关,则认为是自相关的。称为初级自相关或自相关。这是最常见的自相关问题类型。自相关可以记录在coefficientofautocovariance中,也可以记录在第一阶自相关系数中。2,自相关的原因,(1)惯性大部分经济时间数据具有其惯性的明显特征。GDP、价格指数、生产、就业和。
2、失业等时间序列处于周期性恢复阶段,大部分经济序列呈上升趋势,其顺序是每一时刻的值都高于前一时刻的值,并有持续这一趋势的内在动力,直到出现一定的情况(如利率或征税的上升)。(2)设置错误:模型缺少重要变量。例如,牛肉需求的正确模型必须是yt=0 1x1t 2x2t 3x3t,其中:Y=牛肉需求,X1=牛肉价格,X2=消费者收益,X3=猪肉价格。如果模型设定为Yt=0 1X1t 2X2t vt,则该型式中的任何错误项目实际上为vt=3x3t。因此,猪肉价格影响牛肉消费的情况下,由于这些模型设置的错误,随机项目中重要的系统影响因素往往具有相关性。(3)设置错误:函数形式不正确。例如,边际成本模型必须。
3、为Yt=0 1Xt 2Xt2 t,其中:Y=边际成本,X=输出。但是,建模将设置模型Yt=0 1Xt vt。因此,随机项也表示自相关,因为vt=2Xt2 t包含输出的平方对随机项的系统影响。(4)蛛网现象,例如农产品供应的价格反映本身就有延迟期。供应t=0 1价格t-1 t意味着农民可能因年度t的超量生产(该期间价格下降)而导致年度t 1点产量减少,因此不能期望随机干扰项目是随机的,经常会出现蛛网模式。(5)数据的“操作”。例如,季度数据来自每月数据的简单平均值,这种平均计算减少了每月数据的波动,引入了数据的平滑性,这种平滑性本身可以在干扰项中引发系统因素以表示自相关。另外,两个时间点之间的“。
4、插值”技术常常导致随机项的自相关。第二,自相关的结果,1,参数估计无效,OLS参数估计仍然没有无偏OLS估计有效,在大样本中,参数估计没有渐近有效性。也就是说,如果参数估计不一致,2,变量的重要性测试没有意义,在变量的重要性测试中有磁性关系时,参数的OLS估计量的方差增大,标准差增大,实际t统计数据变小,因此,如果原始i=0假定的可能性增大,测试就没有意义了。使用其他检查也是一样。3,模型的预测失败,间隔预测与参数估计的方差相关,方差有误差时,预测估计不准确,预测准确度差。因此,如果模型表示相关性,则预测功能失败。第三,自相关测试,第一,基本思想,自相关测试方法有很多,但基本思想是相同的。首先。
5、利用一般最小二乘估计模型得出随机误差项的“近似估计”,然后分析这些“近似估计”之间的相关性,达到判断随机误差项是否具有自相关性的目的。2,图形方法,2,分析方法,(1)回归检查方法,特定应用需要迭代试算。回归检验法的优点是,如果确认模型的存在自相关性,就会一起知道相关形式。适用于所有类型的自相关问题测试。各方程的估计和重要性测试,有特定的函数形式,表明方程显著成立时,原始模型的自相关性。(2)杜宾-沃森检验法,D-W检验法是杜宾(J.Durbin)和沃森于1951年提出的一系列自相关法该方法的假设条件说明,(1)变量x不是随机的。(2)随机误差项I是一阶自回归形式。在i=i-1 i(3)回归模。
6、型中,延迟变量不应包含为解释变量。也就是说,y=0 1x1i kkki yi-1 I (4)包含回归切片:(5)没有缺少的数据。d.w .与指定样本中出现的x值具有复杂关系的统计信息,很难获得准确的分布。但是,无论如何解释变量的x值,Durbin和Watson都成功地派生了示例的容量n和解释变量数k的下限dL和上限dU。检查阶段根据示例容量n和分析变量数k chad.w .分布表计算阈值dL和dU,并根据以下准则检查计算的d.w .值以确定模型的自相关状态:D.w .值约为2时,模型没有一阶自相关。完全一阶正相关,即=1时,D.W.0是完全一阶负相关,即=-1时,D.W.4完全不相关,即=0时。
7、,D.W.2,(1)从判断标准来看,这种检查方法的大缺陷是不确定的D.W .(2) d.w .检验只能检验一级自相关,但在实际计量经济学问题上,一级自相关是发生次数最多的一类自相关;(3)经验表明,如果没有主自相关,通常连主自相关也不存在。(。因此,在实际应用中,通常只对自相关问题进行d.w .测试。注:第四,具有自相关模型的估计,如果模型被确定为自相关,则必须开发新的方法估计模型。最常用的方法是广义最小二乘法(gls : generalizedleastsquares)、一阶差分法(First-OrderDifference)和广义差分法(GeneralizedDifference),1,广。
8、义最小二乘法,模型Y=XB N(2.5.7)存在自相关和方差,即D-1左乘法(2.5.7)的两侧都有=DD的新模型。D-1Y=D-1XB D-1N(2.5.8),即Y*=X*B N*,此模型中的相对偏差和随机误差项相互独立。因此,可以使用OLS方法估计模型(2.5.8),(2.5.9),这是原始模型(2.5.7)的广义最小二乘估计(GLSestimators),是有效的无偏估计。如何得到矩阵?对于原始模型(2 . 5 . 7 . 7),仍首先使用一般最小二乘法获得随机误差项的近似估计量,这是矩阵估计量,即在可行的广义最小二乘(FGS,feasiblegeneralizedleastsquare。
9、s)文献中找到可以作为一般术语使用的方法时,求出得到的估计量。如果原始模型具有完全主正的磁相关,则i=i-1 I到=1。(2.5.10)可转换:由于I=1xi I不相关,因此此差异模型满足应用OLS方法的基本假设,并使用OLS方法估计原始模型参数的无偏有效估计量。3,广义差分法,模型(2.5.12)是无自相关问题的广义差分模型。使用OLS方法可以估计原始模型参数的无偏、有效估计量。广义差分法可以克服所有类型的自相关引起的问题。主要差异方法是那种特殊情况。4,随机误差项相关系数估计,应用广义差分方法,需要知道不同样本点之间的随机误差项相关系数1,2,l。实际上,人们不知道那些具体的数字,所以首先。
10、要估计它们。一般方法如下:(1)科克伦-奥科特迭代法。(2) durbin (durbin)第二阶段,(1)cooklan-ocot迭代方法,首先使用OLS方法估计从原始模型Yi=0 1Xi中获得的随机错误条目的“近似值”,然后使用OLS方法作为观测值,如下i=1i同样,可以第三次、第四次重复。迭代次数可能因特定问题而异。通常,如果1,2,l的估计差值小于此精度,则预先提供结束迭代的精度。实际上,有时重复两次也能得到更满意的结果。两次重复的过程也被称为科克伦奥科特的第二阶段过程。(2) durbin仍然是一种两阶段方法,首先估计1,2,l,然后估计差异模型。5,Eview/TSP封装下的广义差分方法使用焦炭K在分析变量中引入AR(1)、AR(2)、可以获得参数和1、2、的估计值。其中AR(m)表示随机错误项目的m阶自动回归。1,2,的迭代在估计过程中自动执行。6、虚假自相关问题。随机项目的自相关往往在模型设置中遗漏重要的解释变量,或错误地设置模型的函数形状,因此这种情况可以称为假自相关,必须从模型设置中排除。避免具有虚假相关性的方法是,首先创建“一般”模型,然后逐渐删除明显不重要的变量。5,案例:区域商品出口模式,1,区域商品出口总额和国内生产总值数据,2,自相关检验,(2) d.w .检验,5%重要性级别,n=19,k=2。