
PieNet
PieNet: Personalized Image Enhancement Network(ECCV 2020) github project (和 GleNet 同个实验室同样的研究者)
算法思想:引入用户偏好表示(user preference representation),训练一个表征网络,提取有区分度的偏好特征,用于辅助增强网络,生成符合特定用户偏好的图片
论文提出,图像增强是一种客观的问题,因人而异。因此论文旨在提供一种简便的增强图经:用户提供若干张自己喜欢的高质量图像,图像增强系统根据这些图像的特点,对低质量图像进行增强,能得到同样符合用户偏好的结果。
基本步骤:
- 收集10+种不同偏好设置的图像对,metric learning,训练一个特征提取网络,能将图片编码成“偏好”特征向量;
- 训练一个图像增强网络,引入步骤 1 的偏好特征向量辅助训练;
- 以上两个网络都已训练好;
- 新用户 u 提供 10+ 张自己喜欢的图片给系统,系统算法根据这些图片得到用户的偏好特征向量;
- 系统将步骤 3 中的偏好特征向量应用到图像增强网络,对一些低质量图像进行增强,可以得到符合新用户 u 偏好的增强结果。

模型结构:
两个主要网络 preference embedding network + PieNet,分别负责将图像编码到偏好特征向量、应用偏好特征向量到增强中。
- 用户偏好编码网络(preference embedding network)

假设用户喜欢图像集合