unet图片数据增强_图像增强 PieNet 学习用户对图片的偏好特征,根据用户喜好增强图像...

PieNet是一种个性化图像增强技术,通过用户偏好表示学习网络提取区分度特征,辅助增强网络生成符合用户喜好的图像。该模型在MIT-FiveK数据集上表现出色,能够适应新用户的偏好并提供稳定的增强效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

df34f2747f2b862c0c95f9390c964c23.png

PieNet

PieNet: Personalized Image Enhancement Network(ECCV 2020) github project (和 GleNet 同个实验室同样的研究者)

算法思想:引入用户偏好表示(user preference representation),训练一个表征网络,提取有区分度的偏好特征,用于辅助增强网络,生成符合特定用户偏好的图片

论文提出,图像增强是一种客观的问题,因人而异。因此论文旨在提供一种简便的增强图经:用户提供若干张自己喜欢的高质量图像,图像增强系统根据这些图像的特点,对低质量图像进行增强,能得到同样符合用户偏好的结果。

基本步骤:

  1. 收集10+种不同偏好设置的图像对,metric learning,训练一个特征提取网络,能将图片编码成“偏好”特征向量;
  2. 训练一个图像增强网络,引入步骤 1 的偏好特征向量辅助训练;
  3. 以上两个网络都已训练好;
  4. 新用户 u 提供 10+ 张自己喜欢的图片给系统,系统算法根据这些图片得到用户的偏好特征向量;
  5. 系统将步骤 3 中的偏好特征向量应用到图像增强网络,对一些低质量图像进行增强,可以得到符合新用户 u 偏好的增强结果。

e6ff7b4fecbc9ca257948307f81567b3.png

模型结构:

两个主要网络 preference embedding network + PieNet,分别负责将图像编码到偏好特征向量、应用偏好特征向量到增强中。

  • 用户偏好编码网络(preference embedding network)

3aecdc55b2a5eba962655cbdb10365b8.png

假设用户喜欢图像集合

​,p 代表 positive;不喜欢图像集合
​,n 代表 negative;preference embedding network 对喜欢的图像编码为
​,对不喜欢的图像编码为
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值