算法(六):图解贪婪算法

算法简介

参考:www.cnblogs.com/steven_oyj/…

贪婪算法(贪心算法)是指在对问题进行求解时,在每一步选择中都采取最好或者最优(即最有利)的选择,从而希望能够导致结果是最好或者最优的算法。

贪婪算法所得到的结果往往不是最优的结果(有时候会是最优解),但是都是相对近似(接近)最优解的结果。

  • 贪婪算法并没有固定的算法解决框架,算法的关键是贪婪策略的选择,根据不同的问题选择不同的策略。

  • 必须注意的是策略的选择必须具备无后效性,即某个状态的选择不会影响到之前的状态,只与当前状态有关,所以对采用的贪婪的策略一定要仔细分析其是否满足无后效性。

比如前边介绍的最短路径问题(广度优先狄克斯特拉)都属于贪婪算法,只是在其问题策略的选择上,刚好可以得到最优解。

基本思路

其基本的解题思路为:

1.建立数学模型来描述问题

2.把求解的问题分成若干个子问题

3.对每一子问题求解,得到子问题的局部最优解

4.把子问题对应的局部最优解合成原来整个问题的一个近似最优解

案例

这边的案例来自"算法图解"一书

案例一

区间调度问题:

假设有如下课程,希望尽可能多的将课程安排在一间教室里:

课程 开始时间 结束时间
美术 9AM 10AM
英语 9:30AM 10:30AM
数学 10AM 11AM
计算机 10:30AM 11:30AM
音乐 11AM 12PM

这个问题看似要思考很多,实际上算法很简单:

1.选择结束最早的课,便是要在这教室上课的第一节课 2.接下来,选择第一堂课结束后才开始的课,并且结束最早的课,这将是第二节在教室上的课。

重复这样做就能找出答案,这边的选择策略便是结束最早且和上一节课不冲突的课进行排序,因为每次都选择结束最早的,所以留给后面的时间也就越多,自然就能排下越多的课了。

每一节课的选择都是策略内的局部最优解(留给后面的时间最多),所以最终的结果也是近似最优解(这个案例上就是最优解)。 (该案例的代码实现,就是一个简单的时间遍历比较过程)

案例二

背包问题:有一个背包,容量为35磅 , 现有如下物品

  • 3
    点赞
  • 30
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值