以微信为例,我们录制一个540p的mp4文件,对于Android来说,大体上是遵循这么一个流程:
大体上就是从摄像头输出的YUV帧经过预处理之后,送入编码器,获得编码好的h264视频流。
上面只是针对视频流的编码,另外还需要对音频流单独录制,最后再将视频流和音频流进行合成出最终视频。
这篇文章主要将会对视频流的编码中两个常见问题进行分析:
- 视频编码器的选择(硬编 or 软编)?
- 如何对摄像头输出的YUV帧进行快速预处理(镜像,缩放,旋转)?
视频编码器的选择
对于录制视频的需求,不少app都需要对每一帧数据进行单独处理,因此很少会直接用到 MediaRecorder 来直接录取视频,一般来说,会有这么两个选择
- MediaCodec
- FFMpeg+x264/openh264
我们来逐个解析一下
MediaCodec
MediaCodec是API 16之后Google推出的用于音视频编解码的一套偏底层的API,可以直接利用硬件加速进行视频的编解码。调用的时候需要先初始化MediaCodec作为视频的编码器,然后只需要不停传入原始的YUV数据进入编码器就可以直接输出编码好的h264流,整个API设计模型来看,就是同时包含了输入端和输出端的两条队列:
因此,作为编码器,输入端队列存放的就是原始YUV数据,输出端队列输出的就是编码好的h264流,作为解码器则对应相反。在调用的时候,MediaCodec提供了同步和异步两种调用方式,但是异步使用Callback的方式是在API 21之后才加入的,以同步调用为例,一般来说调用方式大概是这样(摘自官方例子):
- MediaCodec codec = MediaCodec.createByCodecName(name);
- codec.configure(format, …);
- MediaFormat outputFormat = codec.getOutputFormat(); // option B
- codec.start();
- for (;;) {
- int inputBufferId = codec.dequeueInputBuffer(timeoutUs);
- if (inputBufferId >= 0) {
- ByteBuffer inputBuffer = codec.getInputBuffer(…);
- // fill inputBuffer with valid data
- …
- codec.queueInputBuffer(inputBufferId, …);
- }
- int outputBufferId = codec.dequeueOutputBuffer(…);
- if (outputBufferId >= 0) {
- ByteBuffer outputBuffer = codec.getOutputBuffer(outputBufferId);
- MediaFormat bufferFormat = codec.getOutputFormat(outputBufferId); // option A
- // bufferFormat is identical to outputFormat
- // outputBuffer is ready to be processed or rendered.
- …
- codec.releaseOutputBuffer(outputBufferId, …);
- } else if (outputBufferId == MediaCodec.INFO_OUTPUT_FORMAT_CHANGED) {
- // Subsequent data will conform to new format.
- // Can ignore if using getOutputFormat(outputBufferId)
- outputFormat = codec.getOutputFormat(); // option B
- }
- }
- codec.stop();
- codec.release();
简单解释一下,通过 getInputBuffers 获取输入队列,然后调用 dequeueInputBuffer 获取输入队列空闲数组下标,注意 dequeueOutputBuffer 会有几个特殊的返回值表示当前编解码状态的变化,然后再通过 queueInputBuffer 把原始YUV数据送入编码器,而在输出队列端同样通过 getOutputBuffers 和 dequeueOutputBuffer 获取输出的h264流,处理完输出数据之后,需要通过 releaseOutputBuffer 把输出buffer还给系统,重新放到输出队列中。
关于MediaCodec更复杂的使用例子,可以参照下CTS测试里面的使用方式: EncodeDecodeTest.java
从上面例子来看的确是非常原始的API,由于MediaCodec底层是直接调用了手机平台硬件的编解码能力,所以速度非常快,但是因为Google对整个Android硬件生态的掌控力非常弱,所以这个API有很多问题:
1、颜色格式问题
MediaCodec在初始化的时候,在 configure 的时候,需要传入一个MediaFormat对象,当作为编码器使用的时候,我们一般需要在MediaFormat中指定视频的宽高,帧率,码率,I帧间隔等基本信息,除此之外,还有一个重要的信息就是,指定编码器接受的YUV帧的颜色格式。这个是因为由于YUV根据其采样比例,UV分量的排列顺序有很多种不同的颜色格式,而对于Android的摄像头在 onPreviewFrame 输出的YUV帧格式,如果没有配置任何参数的情况下,基本上都是NV21格式,但Google对MediaCodec的API在设计和规范的时候,显得很不厚道,过于贴近Android的HAL层了,导致了NV21格式并不是所有机器的MediaCodec都支持这种格式作为编码器的输入格式! 因此,在初始化MediaCodec的时候,我们需要通过 codecInfo.getCapabilitiesForType 来查询机器上的MediaCodec实现具体支持哪些YUV格式作为输入格式,一般来说,起码在4.4+的系统上,这两种格式在大部分机器都有支持:
- MediaCodecInfo.CodecCapabilities.COLOR_FormatYUV420Planar
- MediaCodecInfo.CodecCapabilities.COLOR_FormatYUV420SemiPlanar
两种格式分别是YUV420P和NV21,如果机器上只支持YUV420P格式的情况下,则需要先将摄像头输出的NV21格式先转换成YUV420P,才能送入编码器进行编码,否则最终出来的视频就会花屏,或者颜色出现错乱
这个算是一个不大不小的坑,基本上用上了MediaCodec进行视频编码都会遇上这个问题
2、编码器支持特性相当有限
如果使用MediaCodec来编码H264视频流,对于H264格式来说,会有一些针对压缩率以及码率相关的视频质量设置,典型的诸如Profile(baseline, main, high),Profile Level, Bitrate mode(CBR, CQ, VBR),合理配置这些参数可以让我们在同等的码率下,获得更高的压缩率,从而提升视频的质量,Android也提供了对应的API进行设置,可以设置到MediaFormat中这些设置项:
- MediaFormat.KEY_BITRATE_MODE
- MediaFormat.KEY_PROFILE
- MediaFormat.KEY_LEVEL
但问题是,对于Profile,Level, Bitrate mode这些设置,在大部分手机上都是不支持的,即使是设置了最终也不会生效,例如设置了Profile为high,最后出来的视频依然还会是Baseline,Shit....
这个问题,在7.0以下的机器几乎是必现的,其中一个可能的原因是,Android在源码层级 hardcode 了profile的的设置:
- // XXX
- if (h264type.eProfile != OMX_VIDEO_AVCProfileBaseline) {
- ALOGW("Use baseline profile instead of %d for AVC recording",
- h264type.eProfile);
- h264type.eProfile = OMX_VIDEO_AVCProfileBaseline;
- }
Android直到 7.0 之后才取消了这段地方的Hardcode
- if (h264type.eProfile == OMX_VIDEO_AVCProfileBaseline) {
- ....
- } else if (h264type.eProfile == OMX_VIDEO_AVCProfileMain ||
- h264type.eProfile == OMX_VIDEO_AVCProfileHigh) {
- .....
- }
这个问题可以说间接导致了MediaCodec编码出来的视频质量偏低,同等码率下,难以获得跟软编码甚至iOS那样的视频质量。
3、16位对齐要求
前面说到,MediaCodec这个API在设计的时候,过于贴近HAL层,这在很多Soc的实现上,是直接把传入MediaCodec的buffer,在不经过任何前置处理的情况下就直接送入了Soc中。而在编码h264视频流的时候,由于h264的编码块大小一般是16x16,于是乎在一开始设置视频的宽高的时候,如果设置了一个没有对齐16的大小,例如960x540,在某些cpu上,最终编码出来的视频就会直接 花屏 !
很明显这还是因为厂商在实现这个API的时候,对传入的数据缺少校验以及前置处理导致的,目前来看,华为,三星的Soc出现这个问题会比较频繁,其他厂商的一些早期Soc也有这种问题,一般来说解决方法还是在设置视频宽高的时候,统一设置成对齐16位之后的大小就好了。
FFMpeg+x264/openh264
除了使用MediaCodec进行编码之外,另外一种比较流行的方案就是使用ffmpeg+x264/openh264进行软编码,ffmpeg是用于一些视频帧的预处理。这里主要是使用x264/openh264作为视频的编码器。
x264基本上被认为是当今市面上最快的商用视频编码器,而且基本上所有h264的特性都支持,通过合理配置各种参数还是能够得到较好的压缩率和编码速度的,限于篇幅,这里不再阐述h264的参数配置,有兴趣可以看下 这里 和 这里 对x264编码参数的调优。
openh264 则是由思科开源的另外一个h264编码器,项目在2013年开源,对比起x264来说略显年轻,不过由于思科支付满了h264的年度专利费,所以对于外部用户来说,相当于可以直接免费使用了,另外,firefox直接内置了openh264,作为其在webRTC中的视频的编解码器使用。
但对比起x264,openh264在h264高级特性的支持比较差:
- Profile只支持到baseline, level 5.2
- 多线程编码只支持slice based,不支持frame based的多线程编码
从编码效率上来看,openh264的速度也并不会比x264快,不过其最大的好处,还是能够直接免费使用吧。
软硬编对比
从上面的分析来看,硬编的好处主要在于速度快,而且系统自带不需要引入外部的库,但是特性支持有限,而且硬编的压缩率一般偏低,而对于软编码来说,虽然速度较慢,但是压缩率比较高,而且支持的H264特性也会比硬编码多很多,相对来说比较可控。就可用性而言,在4.4+的系统上,MediaCodec的可用性是能够基本保证的,但是不同等级的机器的编码器能力会有不少差别,建议可以根据机器的配置,选择不同的编码器配置。
YUV帧的预处理
根据最开始给出的流程,在送入编码器之前,我们需要先对摄像头输出的YUV帧进行一些前置处理
1.缩放
如果设置了camera的预览大小为1080p的情况下,在 onPreviewFrame 中输出的YUV帧直接就是1920x1080的大小,如果需要编码跟这个大小不一样的视频,我们就需要在录制的过程中, 实时 的对YUV帧进行缩放。
以微信为例,摄像头预览1080p的数据,需要编码960x540大小的视频。
最为常见的做法是使用ffmpeg这种的sws_scale函数进行直接缩放,效果/性能比较好的一般是选择SWS_FAST_BILINEAR算法:
- mScaleYuvCtxPtr = sws_getContext(
- srcWidth,
- srcHeight,
- AV_PIX_FMT_NV21,
- dstWidth,
- dstHeight,
- AV_PIX_FMT_NV21,
- SWS_FAST_BILINEAR, NULL, NULL, NULL);
- sws_scale(mScaleYuvCtxPtr,
- (const uint8_t* const *) srcAvPicture->data,
- srcAvPicture->linesize, 0, srcHeight,
- dstAvPicture->data, dstAvPicture->linesize);
在nexus 6p上,直接使用ffmpeg来进行缩放的时间基本上都需要 40ms+ ,对于我们需要录制30fps的来说,每帧处理时间最多就30ms左右,如果光是缩放就消耗了如此多的时间,基本上录制出来的视频只能在15fps上下了。
很明显,直接使用ffmpeg进行缩放是在是太慢了,不得不说swsscale简直就是ffmpeg里面的渣渣,在对比了几种业界常用的算之后,我们最后考虑实现使用这种快速缩放的算法:
我们选择一种叫做的 局部均值 算法,前后两行四个临近点算出最终图片的四个像素点,对于源图片的每行像素,我们可以使用Neon直接实现,以缩放Y分量为例:
- const uint8* src_next = src_ptr + src_stride;
- asm volatile (
- "1: \n"
- "vld4.8 {d0, d1, d2, d3}, [%0]! \n"
- "vld4.8 {d4, d5, d6, d7}, [%1]! \n"
- "subs %3, %3, #16 \n" // 16 processed per loop
- "vrhadd.u8 d0, d0, d1 \n"
- "vrhadd.u8 d4, d4, d5 \n"
- "vrhadd.u8 d0, d0, d4 \n"
- "vrhadd.u8 d2, d2, d3 \n"
- "vrhadd.u8 d6, d6, d7 \n"
- "vrhadd.u8 d2, d2, d6 \n"
- "vst2.8 {d0, d2}, [%2]! \n" // store odd pixels
- "bgt 1b \n"
- : "+r"(src_ptr), // %0
- "+r"(src_next), // %1
- "+r"(dst), // %2
- "+r"(dst_width) // %3
- :
- : "q0", "q1", "q2", "q3" // Clobber List
- );
上面使用的Neon指令每次只能读取和存储8或者16位的数据,对于多出来的数据,只需要用同样的算法改成用C语言实现即可。
在使用上述的算法优化之后,进行每帧缩放,在Nexus 6p上,只需要不到 5ms 就能完成了,而对于缩放质量来说,ffmpeg的SWS_FAST_BILINEAR算法和上述算法缩放出来的图片进行对比,峰值信噪比(psnr)在大部分场景下大概在 38-40 左右,质量也足够好了。
2.旋转
在android机器上,由于摄像头安装角度不同, onPreviewFrame 出来的YUV帧一般都是旋转了90或者270度,如果最终视频是要竖拍的,那一般来说需要把YUV帧进行旋转。
对于旋转的算法,如果是纯C实现的代码,一般来说是个O(n^2 ) 复杂度的算法,如果是旋转960x540的yuv帧数据,在nexus 6p上,每帧旋转也需要 30ms+ ,这显然也是不能接受的。
在这里我们换个思路,能不能不对YUV帧进行旋转?(当然是可以的6666)
事实上在mp4文件格式的头部,我们可以指定一个旋转矩阵,具体来说是在 moov.trak.tkhd box 里面指定,视频播放器在播放视频的时候,会在读取这里矩阵信息,从而决定视频本身的旋转角度,位移,缩放等,具体可以参考下苹果的 文档
通过ffmpeg,我们可以很轻松的给合成之后的mp4文件打上这个旋转角度:
- char rotateStr[1024];
- sprintf(rotateStr, "%d", rotate);
- av_dict_set(&out_stream->metadata, "rotate", rotateStr, 0);
于是可以在录制的时候省下一大笔旋转的开销了,excited!
3.镜像
在使用前置摄像头拍摄的时候,如果不对YUV帧进行处理,那么直接拍出来的视频是会 镜像翻转 的,这里原理就跟照镜子一样,从前置摄像头方向拿出来的YUV帧刚好是反的,但有些时候拍出来的镜像视频可能不合我们的需求,因此这个时候我们就需要对YUV帧进行镜像翻转。
但由于摄像头安装角度一般是90或者270度,所以实际上原生的YUV帧是水平翻转过来的,因此做镜像翻转的时候,只需要刚好以中间为中轴,分别上下交换每行数据即可,注意Y跟UV要分开处理,这种算法用Neon实现相当简单:
- asm volatile (
- "1: \n"
- "vld4.8 {d0, d1, d2, d3}, [%2]! \n" // load 32 from src
- "vld4.8 {d4, d5, d6, d7}, [%3]! \n" // load 32 from dst
- "subs %4, %4, #32 \n" // 32 processed per loop
- "vst4.8 {d0, d1, d2, d3}, [%1]! \n" // store 32 to dst
- "vst4.8 {d4, d5, d6, d7}, [%0]! \n" // store 32 to src
- "bgt 1b \n"
- : "+r"(src), // %0
- "+r"(dst), // %1
- "+r"(srcdata), // %2
- "+r"(dstdata), // %3
- "+r"(count) // %4 // Output registers
- : // Input registers
- : "cc", "memory", "q0", "q1", "q2", "q3" // Clobber List
- );
同样,剩余的数据用纯C代码实现就好了, 在nexus6p上,这种镜像翻转一帧1080x1920 YUV数据大概只要不到 5ms
在编码好h264视频流之后,最终处理就是把音频流跟视频流合流然后包装到mp4文件,这部分我们可以通过系统的 MediaMuxer , mp4v2 ,或者ffmpeg来实现,这部分比较简单,在这里就不再阐述了。