题目:给你一个仅仅有加法和乘法的计算式,能够改变计算的优先级,求式子的最大值和最小值。
分析:dp,区间动态规划。矩阵想成类似物。
状态:f(s,e)为区间[s, e]上计算式最大值。t(s,e)为区间[s, e]上计算式最小值;
方程:f(s。e)= max(f(s。k)+ f(k+1。e)) { s ≤ k ≤ e }。
t(s,e)= min(t(s,k)+ f(k+1。e)) { s ≤ k ≤ e }。
说明:使用long long防止溢出(20^12)。
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
using namespace std;
char buf[101];
char oper[15];
int data[15];
long long f[15][15],t[15][15];
int main()
{
int n,count;
while (~scanf("%d",&n))
while (n --) {
scanf("%s",buf);
data[count = 1] = 0;
for (int i = 0 ; buf[i] ; ++ i)
if (buf[i] == '*' || buf[i] == '+') {
oper[count] = buf[i];
data[++ count] = 0;
}else {
data[count] *= 10;
data[count] += buf[i]-'0';
}
for (int i = 1 ; i <= count ; ++ i)
f[i][i] = t[i][i] = data[i];
for (int l = 2 ; l <= count ; ++ l) {
for (int s = 1 ; s+l-1 <= count ; ++ s) {
f[s][s+l-1] = 0LL; t[s][s+l-1] = 5000000000000000LL;
for (int k = s ; k < s+l-1 ; ++ k) {
if (oper[k] == '+' && f[s][s+l-1] < f[s][k]+f[k+1][s+l-1])
f[s][s+l-1] = f[s][k]+f[k+1][s+l-1];
if (oper[k] == '*' && f[s][s+l-1] < f[s][k]*f[k+1][s+l-1])
f[s][s+l-1] = f[s][k]*f[k+1][s+l-1];
if (oper[k] == '+' && t[s][s+l-1] > t[s][k]+t[k+1][s+l-1])
t[s][s+l-1] = t[s][k]+t[k+1][s+l-1];
if (oper[k] == '*' && t[s][s+l-1] > t[s][k]*t[k+1][s+l-1])
t[s][s+l-1] = t[s][k]*t[k+1][s+l-1];
}
}
}
printf("The maximum and minimum are %lld and %lld.\n",f[1][count],t[1][count]);
}
return 0;
}