flask系列四之SQLAlchemy(二)表关系

一、SQLAlchemy外键约束

1.创建外键约束表结构

目标:建立两个表“用户表(user)”和“问题表( question)”,其中问题表中的作者id是是用户表的id即外键的关系。(一个用户可以有多个问题)

Python语句

(1)用户类

class User(db.Model):
    __tablename__ = 'user'#用户表
    id=db.Column(db.Integer,primary_key=True, autoincrement=True)
    telephone=db.Column(db.String(11), nullable=False)
    username=db.Column(db.String(50), nullable=False)
    password=db.Column(db.String(100), nullable=False)
    confirmPassword = db.Column(db.String(100), nullable=False)

(2)问题类

from datetime import datetime
class
Question(db.Model): __tablename__ = 'question'#问题表 id = db.Column(db.Integer, primary_key=True, autoincrement=True) title = db.Column(db.String(100), nullable=False) content = db.Column(db.Text, nullable=False) # now()获取服务器第一次允许的时间 # now 是每次创建一个模型的时候都获取当前的时间 create_time = db.Column(db.DateTime, default=datetime.now) # 定义外键 ---外键指定--使用表名 author_id = db.Column(db.Integer, db.ForeignKey('user.id'))

   #外键依赖--使用模型名称(类名称)
   # backref表达的是:一个author对应多个questions
author
= db.relationship('User', backref=db.backref('questions'))
# 可以使用:authour.questions 得出当前作者的所有问题
 
    

 

2.数据库添加用户和问题

1.要想添加一个问题,因为问题必须依赖用户而存在,所以首先要先添加一个用户并登录成功。

 userObj = User(telephone=‘xxxx’, username='xx', password='xx',confirmPassword='xx')
                db.session.add(userObj)
                db.session.commit()

2.在用户已经登录的的基础上添加一个问题。

from decorations import login_required
@app.route('/question/', methods=["GET", "POST"]) @login_required def question(): if request.method == "GET":# 加载页面 return render_template("question.html") else:# 接收表单提交 title = request.form.get("title") content = request.form.get("content") question = Question(title=title, content=content) user_id = session.get("user_id")# user_id:登录用户的id通过session记录 user = User.query.filter(User.id == user_id).first() question.author = user db.session.add(question) db.session.commit() return redirect(url_for('index'))

注意此处使用装饰器login_required来处理是否登录问题:

decorations.py中:

from functools import wraps
from flask import session,redirect,url_for

# 登录限制装饰器
def login_required(func):
    @wraps(func)
    def wrapper(*args, **kwargs):
        if session.get('user_id'):
            return func(*args, **kwargs)
        else:
            return redirect(url_for("login"))
    return wrapper

使用装饰器后,若用户没有登录,需要添加问题则会首先跳转到登录页面,登录后才能操作。

3.查找问题的作者

 question = Question(title=title, content=content)
        user_id = session.get("user_id")
        user = User.query.filter(User.id == user_id).first()
        question.author = user# 问题的作者
        db.session.add(question)
        db.session.commit()

4.列出某个作者写过的所有问题

利用反向引用(backref)来,根据作者名字,查找出作者写过的所有文章。

# 使用的方法
user = Users.query.filter(Users.username=='xxx').first()
result = user.questions# 作者添加的所有问题
for question in result:
   pass

二、多对多关系讲解

(1)多对多的关系,需要通过一个中间表进行关联。

(2)中间表,不能通过class的方式实现,只能通过db.Table的方式实现。

(4)设置关联:tags = db.relationship('Tag',secondary=article_tag,backref=db.backref('articles'))需要使用一个关键字参数secondary=中间表 来进行关联。

待续。。。可以参考:http://blog.csdn.net/qq_28877125/article/details/77664575

posted on 2018-02-27 11:27 WFaceBoss 阅读( ...) 评论( ...) 编辑 收藏

转载于:https://www.cnblogs.com/wfaceboss/p/8477240.html

邻接是一种用于在关系型数据库中示树结构和图结构的方法。在 SQLAlchemy 中,可以使用递归关系来实现邻接模型。 首先,你需要创建一个示节点。该应该包含一个主键列以唯一标识每个节点,以及一个外键列来引用该节点的父节点。例如: ```python from sqlalchemy import Column, Integer, ForeignKey, String from sqlalchemy.orm import relationship from sqlalchemy.ext.declarative import declarative_base Base = declarative_base() class Node(Base): __tablename__ = 'node' id = Column(Integer, primary_key=True) name = Column(String) parent_id = Column(Integer, ForeignKey('node.id')) children = relationship('Node', cascade='all, delete-orphan') ``` 在这个例子中,`Node` 包含了一个名为 `id` 的主键列,一个名为 `name` 的列用于存储节点名称,以及一个名为 `parent_id` 的外键列,它引用同一中的父节点。 接下来,你可以使用 SQLAlchemy 的 ORM 功能来操作邻接。例如,你可以创建新节点、查询节点及其子节点等等: ```python from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker engine = create_engine('your_database_url') Session = sessionmaker(bind=engine) session = Session() # 创建根节点 root_node = Node(name='Root') session.add(root_node) session.commit() # 创建子节点 child_node1 = Node(name='Child 1', parent_id=root_node.id) child_node2 = Node(name='Child 2', parent_id=root_node.id) session.add_all([child_node1, child_node2]) session.commit() # 查询根节点的所有子节点 root_node = session.query(Node).filter_by(name='Root').first() children = root_node.children for child in children: print(child.name) # 输出: # Child 1 # Child 2 ``` 通过使用递归关系和ORM映射,你可以方便地管理邻接模型中的节点和它们之间的关系
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值