因为项目需求,须要通过Java程序提交Yarn的MapReduce的计算任务。与一般的通过Jar包提交MapReduce任务不同,通过程序提交MapReduce任务须要有点小变动。详见下面代码。
下面为MapReduce主程序,有几点须要提一下:
1、在程序中,我将文件读入格式设定为WholeFileInputFormat,即不正确文件进行切分。
2、为了控制reduce的处理过程。map的输出键的格式为组合键格式。
与常规的<key,value>不同,这里变为了<TextPair,Value>,TextPair的格式为<key1,key2>。
3、为了适应组合键,又一次设定了分组函数。即GroupComparator。分组规则为,仅仅要TextPair中的key1同样(不要求key2同样),则数据被分配到一个reduce容器中。这样,当同样key1的数据进入reduce容器后,key2起到了一个数据标识的作用。
package web.hadoop;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.BytesWritable;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.io.WritableComparator;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.JobStatus;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Partitioner;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.NullOutputFormat;
import util.Utils;
public class GEMIMain {
public GEMIMain(){
job = null;
}
public Job job;
public static class NamePartitioner extends
Partitioner<TextPair, BytesWritable> {
@Override
public int getPartition(TextPair key, BytesWritable value,
int numPartitions) {
return Math.abs(key.getFirst().hashCode() * 127) % numPartitions;
}
}
/**
* 分组设置类。仅仅要两个TextPair的第一个key同样。他们就属于同一组。
他们的Value就放到一个Value迭代器中, * 然后进入Reducer的reduce方法中。 * * @author hduser * */ public static class GroupComparator extends WritableComparator { public GroupComparator() { super(TextPair.class, true); } @Override public int compare(WritableComparable a, WritableComparable b) { TextPair t1 = (TextPair) a; TextPair t2 = (TextPair) b; // 比較同样则返回0,比較不同则返回-1 return t1.getFirst().compareTo(t2.getFirst()); // 仅仅要是第一个字段同样的就分成为同一组 } } public boolean runJob(String[] args) throws IOException, ClassNotFoundException, InterruptedException { Configuration conf = new Configuration(); // 在conf中设置outputath变量,以在reduce函数中能够获取到该參数的值 conf.set("outputPath", args[args.length - 1].toString()); //设置HDFS中,每次任务生成产品的质量文件所在目录。args数组的倒数第二个原数为质量文件所在目录 conf.set("qualityFolder", args[args.length - 2].toString()); //假设在Server中执行。则须要获取web项目的根路径;假设以java应用方式调试,则读取/opt/hadoop-2.5.0/etc/hadoop/目录下的配置文件 //MapReduceProgress mprogress = new MapReduceProgress(); //String rootPath= mprogress.rootPath; String rootPath="/opt/hadoop-2.5.0/etc/hadoop/"; conf.addResource(new Path(rootPath+"yarn-site.xml")); conf.addResource(new Path(rootPath+"core-site.xml")); conf.addResource(new Path(rootPath+"hdfs-site.xml")); conf.addResource(new Path(rootPath+"mapred-site.xml")); this.job = new Job(conf); job.setJobName("Job name:" + args[0]); job.setJarByClass(GEMIMain.class); job.setMapperClass(GEMIMapper.class); job.setMapOutputKeyClass(TextPair.class); job.setMapOutputValueClass(BytesWritable.class); // 设置partition job.setPartitionerClass(NamePartitioner.class); // 在分区之后依照指定的条件分组 job.setGroupingComparatorClass(GroupComparator.class); job.setReducerClass(GEMIReducer.class); job.setInputFormatClass(WholeFileInputFormat.class); job.setOutputFormatClass(NullOutputFormat.class); // job.setOutputKeyClass(NullWritable.class); // job.setOutputValueClass(Text.class); job.setNumReduceTasks(8); // 设置计算输入数据的路径 for (int i = 1; i < args.length - 2; i++) { FileInputFormat.addInputPath(job, new Path(args[i])); } // args数组的最后一个元素为输出路径 FileOutputFormat.setOutputPath(job, new Path(args[args.length - 1])); boolean flag = job.waitForCompletion(true); return flag; } @SuppressWarnings("static-access") public static void main(String[] args) throws ClassNotFoundException, IOException, InterruptedException { String[] inputPaths = new String[] { "normalizeJob", "hdfs://192.168.168.101:9000/user/hduser/red1/", "hdfs://192.168.168.101:9000/user/hduser/nir1/","quality11111", "hdfs://192.168.168.101:9000/user/hduser/test" }; GEMIMain test = new GEMIMain(); boolean result = test.runJob(inputPaths); } }
下面为TextPair类
public class TextPair implements WritableComparable<TextPair> {
private Text first;
private Text second;
public TextPair() {
set(new Text(), new Text());
}
public TextPair(String first, String second) {
set(new Text(first), new Text(second));
}
public TextPair(Text first, Text second) {
set(first, second);
}
public void set(Text first, Text second) {
this.first = first;
this.second = second;
}
public Text getFirst() {
return first;
}
public Text getSecond() {
return second;
}
@Override
public void write(DataOutput out) throws IOException {
first.write(out);
second.write(out);
}
@Override
public void readFields(DataInput in) throws IOException {
first.readFields(in);
second.readFields(in);
}
@Override
public int hashCode() {
return first.hashCode() * 163 + second.hashCode();
}
@Override
public boolean equals(Object o) {
if (o instanceof TextPair) {
TextPair tp = (TextPair) o;
return first.equals(tp.first) && second.equals(tp.second);
}
return false;
}
@Override
public String toString() {
return first + "\t" + second;
}
@Override
/**A.compareTo(B)
* 假设比較同样,则比較结果为0
* 假设A大于B,则比較结果为1
* 假设A小于B。则比較结果为-1
*
*/
public int compareTo(TextPair tp) {
int cmp = first.compareTo(tp.first);
if (cmp != 0) {
return cmp;
}
//此时实现的是升序排列
return second.compareTo(tp.second);
}
}
下面为WholeFileInputFormat,其控制数据在mapreduce过程中不被切分
package web.hadoop;
import java.io.IOException;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.BytesWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.JobContext;
import org.apache.hadoop.mapreduce.RecordReader;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
public class WholeFileInputFormat extends FileInputFormat<Text, BytesWritable> {
@Override
public RecordReader<Text, BytesWritable> createRecordReader(
InputSplit arg0, TaskAttemptContext arg1) throws IOException,
InterruptedException {
// TODO Auto-generated method stub
return new WholeFileRecordReader();
}
@Override
protected boolean isSplitable(JobContext context, Path filename) {
// TODO Auto-generated method stub
return false;
}
}
下面为WholeFileRecordReader类
package web.hadoop;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.BytesWritable;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.RecordReader;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
public class WholeFileRecordReader extends RecordReader<Text, BytesWritable> {
private FileSplit fileSplit;
private FSDataInputStream fis;
private Text key = null;
private BytesWritable value = null;
private boolean processed = false;
@Override
public void close() throws IOException {
// TODO Auto-generated method stub
// fis.close();
}
@Override
public Text getCurrentKey() throws IOException, InterruptedException {
// TODO Auto-generated method stub
return this.key;
}
@Override
public BytesWritable getCurrentValue() throws IOException,
InterruptedException {
// TODO Auto-generated method stub
return this.value;
}
@Override
public void initialize(InputSplit inputSplit, TaskAttemptContext tacontext)
throws IOException, InterruptedException {
fileSplit = (FileSplit) inputSplit;
Configuration job = tacontext.getConfiguration();
Path file = fileSplit.getPath();
FileSystem fs = file.getFileSystem(job);
fis = fs.open(file);
}
@Override
public boolean nextKeyValue() {
if (key == null) {
key = new Text();
}
if (value == null) {
value = new BytesWritable();
}
if (!processed) {
byte[] content = new byte[(int) fileSplit.getLength()];
Path file = fileSplit.getPath();
System.out.println(file.getName());
key.set(file.getName());
try {
IOUtils.readFully(fis, content, 0, content.length);
// value.set(content, 0, content.length);
value.set(new BytesWritable(content));
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
} finally {
IOUtils.closeStream(fis);
}
processed = true;
return true;
}
return false;
}
@Override
public float getProgress() throws IOException, InterruptedException {
// TODO Auto-generated method stub
return processed ? fileSplit.getLength() : 0;
}
}