【引例】(2018\(\cdot\)太原模拟,来源于凤中2019理科资料微课时练习三的第6题)
已知命题\(p\):\(\exists x_0\in R\),\(e^{x_0}-mx_0=0\),命题\(q\):\(\forall x\in R\),\(x^2+mx+1\ge 0\),
若\(p\lor(\neg q)\)为假命题,求实数\(m\)的取值范围。
【解析】由复合命题真值表可知,\(p\lor(\neg q)\)为假命题,
则\(p\)和\(\neg q\)都为假命题,即\(p\)假\(q\)真。
先说命题\(q\):\(\forall x\in R\),\(x^2+mx+1\ge 0\),为真命题,
则属于恒成立命题,由\(\Delta=m^2-4\leq 0\),解得\(-2\leq m\leq 2\);
即\(q\)为真,则有\(-2\leq m\leq 2\);
以下重点研究命题\(p\),而由题目可知,
\(\neg p\):\(\forall x\in R\),\(e^x-mx \neq 0\),为真命题。
即方程\(e^x-mx =0\)无实根,此时准备分离参数:
思路一:由不完全分离参数法,得到,方程$mx= e^x$ 无实根, 即函数$y=e^x$和函数$y=mx$的图像没有交点。做出辅助图像如右所示, 设直线$y=mx$与曲线$y=e^x$相切于点$P(x_0,y_0)$, 则$\left\{\begin{array}{l}{m=e^{x_0}①}\\{y_0=e^{x_0}②}\\{y_0=mx_0③}\end{array}\right.$ (上述方程的来源是:从斜率相等角度,从切点在曲线上的角度,从切点在直线上的角度) 解得切点坐标为$P(1,e)$,$m=e$,即二者相切时的斜率为$e$, 故由图可知,两个函数图像没有交点时,$0\leq m < e$。 思路二:由完全分离参数法,得到,方程$m=\cfrac{e^x}{x}$无实根, 即函数$y=m$和函数$y=\cfrac{e^x}{x}$的图像没有交点。 令$g(x)=\cfrac{e^x}{x}$,下面用导数研究其单调性,定义域为$(-\infty,0)\cup(0,+\infty)$, $g'(x)=\cfrac{e^x\cdot x-e^x\cdot 1}{x^2}=\cfrac{e^x(x-1)}{x^2}$, 则$x\in (-\infty,0)$时,$g'(x)<0$,$g(x)$单调递减, $x\in (0,1)$时,$g'(x)<0$,$g(x)$单调递减, $x\in (1,+\infty)$时,$g'(x)>0$,$g(x)$单调递增, 且$g(1)=\cfrac{e^1}{1}=e$, 在同一个坐标系中做出函数$y=m$和函数$y=g(x)$的图像, (做函数$g(x)$的图像时务必要注意函数值的正负) 由图像可知,两个函数图像没有交点时,$0 \leq m < e$故\(e^x-mx\neq 0\)时,得到\(0\leq m<e\),此时\(p\)为假,
综上,\(p\)为假且\(q\)为真时,
必有\(\left\{\begin{array}{l}{-2\leq m\leq 2}\\{ 0\leq m<e}\end{array}\right.\)
故\(0\leq m\leq 2\),即实数\(m\)的取值范围为\([0,2]\)。
【数学知识】
①简单命题的真假判断;复合命题真值表;
②函数与方程知识;方程\(f(x)-g(x)=0\)的根的个数;等于函数\(h(x)=f(x)-g(x)\)的零点个数;
也等于函数\(y=f(x)\)与函数\(y=g(x)\)的图像的交点个数;
③导数法研究函数的单调性,做函数的简图;
④求曲线的切线;列、解相关的方程组;
【数学经验】
①将命题转化为恒成立和能成立命题;
②数与形的不断转化;
③分离参数的常用方法:
④
【本题拓展】
\(\exists x\in R\),使得方程\(e^x-mx=0\)有解,求参数\(m\)的取值范围。\((-\infty,0)\cup [e,+\infty)\)
若方程\(e^x-mx=0\)的解集不是空集,求参数\(m\)的取值范围。\((-\infty,0)\cup [e,+\infty)\)
用导数方法多练习这些函数的图像,\(y=\cfrac{e^x}{x}\);\(y=x\cdot e^x\);\(y=\cfrac{lnx}{x}\);\(y=x\cdot lnx\);
函数\(y=e^x\)和函数\(y=x+1\)相切于点\((0,1)\),你能说明吗?
注意函数\(y=kx+1\),\(y=kx^2\),\(y=k|x|\)中的\(k\)的作用。