题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2602
题目很简单,值得一提的是:
如果要求恰好装满背包,那么在初始化时除了f[0]为0其它f[1..V]均设为-∞,这样就可以保证最终得到的f[N]是一种恰好装满背包的最优解。
如果并没有要求必须把背包装满,而是只希望价格尽量大,初始化时应该将f[0..V]全部设为0。
为什么呢?可以这样理解:初始化的f数组事实上就是在没有任何物品可以放入背包时的合法状态。如果要求背包恰好装满,那么此时只有容量为0的背包可能被价值为0的nothing“恰好装满”,其它容量的背包均没有合法的解,属于未定义的状态,它们的值就都应该是-∞了。如果背包并非必须被装满,那么任何容量的背包都有一个合法解“什么都不装”,这个解的价值为0,所以初始时状态的值也就全部为0了
View Code
1 #include<iostream> 2 const int N=1100; 3 using namespace std; 4 int value[N],volume[N],dp[N]; 5 6 int main(){ 7 int _case; 8 scanf("%d",&_case); 9 while(_case--){ 10 int n,v,sum=0; 11 scanf("%d%d",&n,&v); 12 memset(dp,0,sizeof(dp)); 13 for(int i=0;i<n;i++){ 14 scanf("%d",&value[i]); 15 } 16 for(int i=0;i<n;i++){ 17 scanf("%d",&volume[i]); 18 } 19 for(int i=0;i<n;i++){ 20 for(int j=v;j-volume[i]>=0;j--){ 21 dp[j]=max(dp[j],dp[j-volume[i]]+value[i]); 22 } 23 } 24 printf("%d\n",dp[v]); 25 } 26 return 0; 27 }