题目:C. DZY Loves Sequences (LIS升级)

题意:

    在n个数中,最多改变一个数字,并求能够达到的最长严格上升子序列(连续)长度

分析:

    考虑第i个数,能否改变后拼接前后两个字串,并维护当前最大值

    状态:

        left[i]:  表示以i为终点的最长严格上升子序列长度

        right[i]: 表示以i为起点的最长严格上升子序列长度

        dp[i]:   表示改变第i个数后,拼接前后字串的长度

    转移方程:

      dp[i] = max{left[i-1] + right[i+1] + 1 | a[i-1] + 1 < a[i+1]};

核心:

for(i = 1; i<=n; i++)
{
    if(a[i-1] >= a[i])
        ans = max(ans, right[i] + 1);
    if(a[i+1] <= a[i])
        ans = max(ans, left[i] + 1);
    if(a[i-1] + 1 < a[i+1])
        ans = max(ans, left[i-1] + right[i+1] + 1);
}

代码:


#include <stdio.h>
#include <iostream>
#include <math.h>
#include <algorithm>
#include <string.h>
#include <string>
#include <queue>
#include <stack>
#include <map>
#include <vector>
#include <time.h>

using namespace std;

int a[100000+10];
int L[100000+10];
int R[100000+10];

int main()
{
	//freopen("a.txt", "r", stdin);

	int n, i, j;
	while(~scanf("%d", &n))
	{
		for(i = 1; i<=n; i++)
		{
			scanf("%d", &a[i]);
		}
		memset(L, 0, sizeof(L));
		for(i = 1; i<=n; i++)
		{
			L[i] = 1;
			if(i>1 && a[i] > a[i-1])
			{
				L[i] = max(L[i], L[i-1]+1);
			}
		}
		memset(R, 0, sizeof(R));
		int ans = 0;
		for(i = n; i>=1; i--)
		{
			R[i] = 1;
			if(i<n && a[i] < a[i+1])
			{
				R[i] = max(R[i], R[i+1]+1);
			}
			ans = max(ans, R[i]);
		}
		for(i = 1; i<=n; i++)
		{
			if(i>1 && a[i-1] >= a[i])
				ans = max(ans, L[i-1] + 1);
			if(i<n && a[i] >= a[i+1])
				ans = max(ans, R[i+1] + 1);
			if(i>1 && i<n && a[i-1] + 1 < a[i+1])
				ans = max(ans, L[i-1] + R[i+1] + 1);
		}
		printf("%d\n", ans);
	}
	return 0;
}