题目:C. DZY Loves Sequences (LIS升级)
题意:
在n个数中,最多改变一个数字,并求能够达到的最长严格上升子序列(连续)长度
分析:
考虑第i个数,能否改变后拼接前后两个字串,并维护当前最大值
状态:
left[i]: 表示以i为终点的最长严格上升子序列长度
right[i]: 表示以i为起点的最长严格上升子序列长度
dp[i]: 表示改变第i个数后,拼接前后字串的长度
转移方程:
dp[i] = max{left[i-1] + right[i+1] + 1 | a[i-1] + 1 < a[i+1]};
核心:
for(i = 1; i<=n; i++)
{
if(a[i-1] >= a[i])
ans = max(ans, right[i] + 1);
if(a[i+1] <= a[i])
ans = max(ans, left[i] + 1);
if(a[i-1] + 1 < a[i+1])
ans = max(ans, left[i-1] + right[i+1] + 1);
}
代码:
#include <stdio.h>
#include <iostream>
#include <math.h>
#include <algorithm>
#include <string.h>
#include <string>
#include <queue>
#include <stack>
#include <map>
#include <vector>
#include <time.h>
using namespace std;
int a[100000+10];
int L[100000+10];
int R[100000+10];
int main()
{
//freopen("a.txt", "r", stdin);
int n, i, j;
while(~scanf("%d", &n))
{
for(i = 1; i<=n; i++)
{
scanf("%d", &a[i]);
}
memset(L, 0, sizeof(L));
for(i = 1; i<=n; i++)
{
L[i] = 1;
if(i>1 && a[i] > a[i-1])
{
L[i] = max(L[i], L[i-1]+1);
}
}
memset(R, 0, sizeof(R));
int ans = 0;
for(i = n; i>=1; i--)
{
R[i] = 1;
if(i<n && a[i] < a[i+1])
{
R[i] = max(R[i], R[i+1]+1);
}
ans = max(ans, R[i]);
}
for(i = 1; i<=n; i++)
{
if(i>1 && a[i-1] >= a[i])
ans = max(ans, L[i-1] + 1);
if(i<n && a[i] >= a[i+1])
ans = max(ans, R[i+1] + 1);
if(i>1 && i<n && a[i-1] + 1 < a[i+1])
ans = max(ans, L[i-1] + R[i+1] + 1);
}
printf("%d\n", ans);
}
return 0;
}
转载于:https://blog.51cto.com/739789987/1438068