codeforces 447C DZY Loves Sequences(最长上升子序列变体)

本文介绍了一种寻找最长递增子序列的优化算法,该算法能够在给定序列中找到最长的递增子序列,允许修改其中一个元素来延长子序列的长度。文章通过动态规划方法,首先计算从左到右及从右到左的最长递增子序列长度,再通过比较相邻元素差值确定最优解。
摘要由CSDN通过智能技术生成

Description

DZY has a sequence a, consisting of n integers.

We'll call a sequence ai, ai + 1, ..., aj(1 ≤ i ≤ j ≤ n) a subsegment of the sequence a. The value(j - i + 1) denotes the length of the subsegment.

Your task is to find the longest subsegment of a, such that it is possible to change at most one number (change one number to any integer you want) from the subsegment to make the subsegment strictly increasing.

You only need to output the length of the subsegment you find.

Input

The first line contains integer n (1 ≤ n ≤ 105). The next line containsn integersa1, a2, ..., an (1 ≤ ai ≤ 109).

Output

In a single line print the answer to the problem — the maximum length of the required subsegment.

Sample Input

Input
6
7 2 3 1 5 6
Output
5


解题思路:最初的想法就是直接计算一下,忽视了算法复杂度的问题。WA了几次后又TLE.....正确的做法应该是动态规划,先分别求出从前往后和从后往前的最长递增子序列的长度,然后再考虑通过更换元素能否将两者连在一起,其中很重要的一点就是更换元素两侧的差要大于等于2~

TLE代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int a[100005];
int n;
int find(int i)
{
    int j;
    int flag = 0;
    for(j=i;j<n-1;j++)
    {
        if(a[j]<a[j+1])
            continue;
        else
        {
                if(flag==1)
                    break;
                else
                {
                    flag = 1;
                    if(j+1 == n-1)
                        return j-i+2;
                    else if(a[j+2]-a[j]<2)
                        return j-i+2;
                }
        }

    }
    return j-i+1;
}
int main()
{
    freopen("test.txt","r",stdin);
    scanf("%d",&n);
    int i;
    for(i=0;i<n;i++)
    {
        scanf("%d",&a[i]);
    }
    int ans = 0;
    for(i=0;i<n-1;i++)
    {
        int num = find(i);
        ans = max(ans,num);
    }
    cout << ans << endl;
    return 0;
}

AC代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int a[100005];
int n;
int dp1[100005];
int dp2[100005];
int main()
{
    //freopen("test.txt","r",stdin);
    scanf("%d",&n);
    int i;
    for(i=1;i<=n;i++)
    {
        scanf("%d",&a[i]);
    }
    int ans = 0;
    dp1[0] = 0;
    dp1[1] = 1;
    dp2[n] = 1;
    dp2[n+1] = 0;
    for(i=2;i<=n;i++)//从前向后的最长上升子序列
    {
        if(a[i]>a[i-1])
            dp1[i] = dp1[i-1] + 1;
        else
            dp1[i] = 1;
    }
    for(i=n-1;i>=1;i--)//从后往前的最长下降子序列
    {
        if(a[i+1]>a[i])
            dp2[i] =dp2[i+1] + 1;
        else
            dp2[i] = 1;
    }
    /*for(i=1;i<=n;i++)
    {
        ans = max(ans,dp1[i]);
    }*/
    for(i=1;i<=n;i++)//对两种情况进行拼接组合
    {
        a[i+1] - a[i-1]>=2 ? ans = max(ans,dp1[i-1] + dp2[i+1] + 1) : ans = max(ans,max(dp1[i-1],dp2[i+1])+1);
    }
    cout << ans << endl;
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值