HDU 1848 Fibonacci again and again(SG函数入门)题解

本文深入探讨了SG函数在博弈论中的应用,通过实例解析了如何使用SG函数解决复杂博弈问题。文章详细介绍了SG函数的计算过程,并提供了一段完整的代码实现,展示了如何在实际编程中运用这一理论。适合对博弈论和算法感兴趣的读者。
摘要由CSDN通过智能技术生成

思路:SG打表

参考:SG函数和SG定理【详解】

代码:

#include<queue>
#include<cstring>
#include<set>
#include<map>
#include<stack>
#include<cmath>
#include<vector>
#include<cstdio>
#include<iostream>
#include<algorithm>
#define eps 1e-9
typedef long long ll;
const int maxn = 1e3 + 10;
const int seed = 131;
const ll MOD = 1e9 + 7;
const int INF = 0x3f3f3f3f;
using namespace std;
int fib[50];
int s[maxn], sg[maxn];
void getSG(){
    sg[0] = 0;
    for(int i = 1; i <= 1000; i++){
        memset(s, 0, sizeof(s));
        for(int j = 1; fib[j] <= i; j++){
            s[sg[i - fib[j]]] = 1;
        }
        for(int j = 0; j <= i; j++){
            if(!s[j]){
                sg[i] = j;
                break;
            }
        }
    }
}
void FIB(){
    fib[1] = 1, fib[2] = 2;
    for(int i = 3; i <= 30; i++)
        fib[i] = fib[i - 1] + fib[i - 2];
}
int main(){
    int n, m, p;
    FIB();
    getSG();
    while(scanf("%d%d%d", &n, &m ,&p) && n + m + p){
        if(sg[n] ^ sg[m] ^ sg[p]) printf("Fibo\n");
        else printf("Nacci\n");
    }
    return 0;
}

 

转载于:https://www.cnblogs.com/KirinSB/p/9653270.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值