Leetcode: Encode String with Shortest Length && G面经

Given a non-empty string, encode the string such that its encoded length is the shortest.

The encoding rule is: k[encoded_string], where the encoded_string inside the square brackets is being repeated exactly k times.

Note:
k will be a positive integer and encoded string will not be empty or have extra space.
You may assume that the input string contains only lowercase English letters. The string's length is at most 160.
If an encoding process does not make the string shorter, then do not encode it. If there are several solutions, return any of them is fine.
Example 1:

Input: "aaa"
Output: "aaa"
Explanation: There is no way to encode it such that it is shorter than the input string, so we do not encode it.
Example 2:

Input: "aaaaa"
Output: "5[a]"
Explanation: "5[a]" is shorter than "aaaaa" by 1 character.
Example 3:

Input: "aaaaaaaaaa"
Output: "10[a]"
Explanation: "a9[a]" or "9[a]a" are also valid solutions, both of them have the same length = 5, which is the same as "10[a]".
Example 4:

Input: "aabcaabcd"
Output: "2[aabc]d"
Explanation: "aabc" occurs twice, so one answer can be "2[aabc]d".
Example 5:

Input: "abbbabbbcabbbabbbc"
Output: "2[2[abbb]c]"
Explanation: "abbbabbbc" occurs twice, but "abbbabbbc" can also be encoded to "2[abbb]c", so one answer can be "2[2[abbb]c]".

DP: 

Initially I think of 1D DP, dp[i] stands for the shortest string of first i characters, then:

dp[i] = minLen{dp[k] + encode(substring(k+1, i))}

then I realize that the second part encode(substring(k+1, i)) is actually the same with our dp problem. So it turns out the transfer function is

dp[i] = minLen{dp[k] + dp(substring(k+1, i))}

then 1D is not enough, I introduce the second dimension, which indicates the end. dp[i][j] is the shortest encoded string from i to j

But the hardest part of this problem is how to generate dp[i][j] from dp[i][k] and dp[k+1][j]

I've thought about the cases like: 

dp[i][k] = 3[abc]   dp[k+1][j] = 2[abc],   then dp[i][j] = 5[abc]

dp[i][k] = 3[abc]   dp[k+1][j] = xyz,   then dp[i][j] = 3[abc]xyz

dp[i][k] = aabc   dp[k+1][j] = aabc,   then dp[i][j] = 2[aabc]

No idea what to implement this conveniently, so refer to idea  https://discuss.leetcode.com/topic/71963/accepted-solution-in-java

The idea is to firstly concantenate dp[i][k] and dp[k+1][j] directly to construct dp[i][j], and then check if there exist possible repeat patterns in the original substring s.substring(i, j+1) that could further shorten dp[i][j]

replaceAll function is really clever

 

Time Complexity is O(N^4), replaceAll() is O(N)

 1 public class Solution {
 2     public String encode(String s) {
 3         if (s==null || s.length()==0) return "";
 4         String[][] dp = new String[s.length()][s.length()];
 5         
 6         for (int len=0; len<s.length(); len++) {
 7             for (int i=0; i+len<s.length(); i++) {
 8                 int j = i + len;
 9                 String subStr = s.substring(i, j+1);
10                 dp[i][j] = subStr; //initialize
11                 if (len < 4) continue;
12                 for (int k=i; k<j; k++) {
13                     if (dp[i][k].length() + dp[k+1][j].length() < dp[i][j].length()) {
14                         dp[i][j] = dp[i][k] + dp[k+1][j];
15                     }
16                 }
17                 
18                 //check if subStr has repeat pattern
19                 for (int k=i; k<j; k++) {
20                     String repeat = s.substring(i, k+1);
21                     if (subStr.length()%(k-i+1)==0 && subStr.replaceAll(repeat, "").length()==0) {
22                         String ss = subStr.length()/repeat.length() + "[" + dp[i][k] + "]";
23                         if (ss.length() < dp[i][j].length()) 
24                             dp[i][j] = ss;
25                     }
26                 }
27             }
28         }
29         return dp[0][s.length()-1];
30     }
31 }

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值