$\mathbf{R}$上的离散点集是至多可数集

设$S\subset \mathbb{R}$,且$\forall s\in S$,$s$都是$S$的孤立点.则$S$是至多可数集.


证明:见开集的构造中的引理.



注:利用这个结论可以证明一个看起来不太显然的题:

$X$是一个不可数的集合,里面的元素都是非负实数.从里面挑出任意多个(但必须是有限个)元素加起来,都不会大于某个实数$M$.则X里的正数只有至多可数个.

 

我曾给过这个题一种证法.见下面分隔出来的部分.



证明:


性质:根据实数的阿基米德性质,对于任意给定的正实数$\varepsilon$,都存在相应的正整数$N$,使得$\frac{1}{N}<\varepsilon$.

对于任意给定的正整数$n$,$X$中大于$\frac{1}{n}$的数只能是有限个,否则会与“$X$中任意有限多个元素加起来不超过某个给定实数”这个条件矛盾(为什么?).把$X$中所有大于$\frac{1}{n}$的数形成的集合记为$G_n$.(可见,$X$中大于1的数只有有限个,大于$\frac{1}{2}$的数也只有有限个,大于$\frac{1}{3}$的数也只有有限个,大于$\frac{1}{4}$的数也只有有限个……)

而且$1,\frac{1}{2},\frac{1}{3},\frac{1}{4},\cdots,\frac{1}{n},\cdots$形成的集合是一个可数集,所以$G_1,G_2,G_3,G_4,\cdots,G_n,\cdots$也是一个可数集.由于$\forall i\in\mathbb{N}^+$,$G_i$都是有限集,所以$\bigcup_{i\in\mathbb{N}^+}G_i$是至多可数集(为什么?),再由性质,可知$\bigcup_{i\in\mathbb{N}^+}G_i$已经包含了$X$中的所有正数,因此$X$中的正数形成的集合是至多可数的(为什么?).$\Box$



现在看来,可以用$\mathbf{R}$上的离散点集是至多可数集轻易地证明该题目.

转载于:https://www.cnblogs.com/yeluqing/archive/2013/02/05/3827488.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值