5.2 最优近似解 $\mathbf{\hat{x}} = A^{-1}_L\mathbf{b}$ 是最小二乘解

5.2 最优近似解 x ^ = A L − 1 b \mathbf{\hat{x}} = A^{-1}_L\mathbf{b} x^=AL1b 是最小二乘解

根据平面几何定理,点到直线的距离,垂线最短,推广到高维,即点到子空间的距离,垂线最短。根据投影性质,向量 b p \mathbf{b}_p bp 是向量 b \mathbf{b} b 在子空间 c o l A col A colA 的垂足,向量 b − b p \mathbf{b}-\mathbf{b}_p bbp 是垂线,距离最短,又 b p = A x ^ \mathbf{b}_p = A\mathbf{\hat{x}} bp=Ax^ ,得

∥ b − b p ∥ = ∥ b − A x ^ ∥ = m i n x ( ∥ b − A x ∥ ) \| \mathbf{b}-\mathbf{b}_p \| = \| \mathbf{b}-A\mathbf{\hat{x}} \| = min_\mathbf{x} (\| \mathbf{b}-A\mathbf{x} \|) bbp=bAx^=minx(bAx)

在子空间 c o l A col A colA 中任意向量 A x A\mathbf{x} Ax 与向量 b \mathbf{b} b 的距离大于垂线距离 ∥ b − b p ∥ \| \mathbf{b}-\mathbf{b}_p \| bbp ,距离 ∥ b − A x ∥ \| \mathbf{b}-A\mathbf{x} \| bAx 最小的解即是最优近似解。

∥ b − b p ∥ 2 \| \mathbf{b}-\mathbf{b}_p \|^2 bbp2 是什么呢? ∥ b − b p ∥ 2 = ∥ b − A x ^ ∥ 2 = ∑ i ( b i − a r i T x ^ ) 2 \| \mathbf{b}-\mathbf{b}_p \|^2 = \| \mathbf{b}-A\mathbf{\hat{x}} \|^2 = \sum_i (b_i-\mathbf{a}^T_{ri}\mathbf{\hat{x}})^2 bbp2=bAx^2=i(biariTx^)2 b i − a r i T x ^ b_i-\mathbf{a}^T_{ri}\mathbf{\hat{x}} biariTx^ 是第 i i i 次测量数据的预测值 b ^ i = a r i T x ^ \hat{b}_i=\mathbf{a}^T_{ri}\mathbf{\hat{x}} b^i=ariTx^ 与实际测量值 b i b_i bi 的差, b i − b ^ i b_i-\hat{b}_i bib^i 称为残差。最优近似解的残差平方和最小,故称最小二乘解,二乘就是指平方和。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值