新定义习题

前言

新定义习题,是高考命题人中的大学老师的最爱,能检测学生迅速理解数学概念的素养,几乎是高考必考的小题之一,她往往从大学数学中拿出个小概念,稍加改动就能用来考查学生了。也是学生感觉头疼的一类题目。

命题方向

  • 函数类新定义

主要包括两类:

(1)概念型的新定义函数问题,主要以“新概念函数”为载体,利用新定义运算法则、新定义对应法则、新定义某种性质等方式给出“新概念函数”,此类新定义侧重函数的定义域与值域以及最值等有关的考查.

(2)性质型新定义函数多以函数的单调性、奇偶性、对称性、最值等作为命题的背景.

  • 其他类型

典例剖析

例1【2019届高三理科数学课时作业】

设函数\(y=f(x)\)的定义域为\(D\),如果存在非零常数\(T\),对于任意\(x\in D\),都有\(f(x+T)=T\cdot f(x)\),则称函数\(y=f(x)\)为“似周期函数”,非零常数\(T\)为函数\(y=f(x)\)的“似周期”。以下四个关于“似周期函数”的命题那些是真命题?①③④

①如果“似周期函数”的\(T=1\),那么它是周期为2的周期函数;

②函数\(f(x)=x\)是“似周期函数”;

③函数\(f(x)=2^{-x}\)是“似周期函数”;

④如果函数\(f(x)=cos\omega x\)是“似周期函数”,那么\(\omega=k\pi,k\in Z\).

分析:对于①,满足\(f(x-1)=-f(x)\),则可知\(f(x)\)是周期函数,且周期\(T=2\);故①是真命题;

对于②,\(f(x+T)=x+T,T\cdot f(x)=Tx\),若是“似周期函数”,则必须满足\(x+T=Tx\)对任意的\(x\in R\)要恒成立,显然不存在这样的非零常数\(T\),故②是假命题;

对于③,\(f(x+T)=(\cfrac{1}{2})^{x+T}\)\(T\cdot f(x)=T\cdot(\cfrac{1}{2})^x\),若是“似周期函数”,则必须满足\((\cfrac{1}{2})^{x+T}=T\cdot(\cfrac{1}{2})^x\)对任意的\(x\in R\)要恒成立,只要存在非零实数\(T\),使得\((\cfrac{1}{2})^T=T\)成立就行,显然存在这样的非零常数\(T\),故③是真命题;

对于④,\(f(x+T)=cos(\omega(x+T))\)\(T\cdot f(x)=T\cdot cos\omega x\),若是“似周期函数”,则必须满足\(cos(\omega x+\omega T)=T\cdot cos\omega x\),对任意的\(x\in R\)要恒成立,故存在非零实数\(T=\pm 1\)\(\omega=k\pi,k\in Z\),故④是真命题;详细讲述:当\(k\)为偶数时,取\(T=1\),成立;当\(k\)为奇数时,取\(T=-1\),成立;课件地址

例2【2019届高三理科数学课时作业】

把二进制数\(10111_{(2)}\)转化为十进制数为________.

分析:十进制数\(10111_{(10)}=1\times 10^4+0\times 10^3+1\times 10^2+1\times 10^1+1\times 10^0=10111_{(10)}\)

二进制数转化为十进制数,我们只要依次累加各位数位上的数字\(\times\)该数位的权重即可得到结果。

比如\(10111_{(2)}=1\times 2^4+0\times 2^3+1\times 2^2+1\times 2^1+1\times 2^0=23_{(10)}\)

则二进制数\(1111_{(2)}=1\times 2^3+1\times 2^2+1\times 2^1+1\times 2^0=15_{(10)}\)

补充题目:下图是一个将二进制数\(1111_{(2)}\)转化为十进制数的程序框图,

\(i=1\)\(S=1+2\times1=1\times2^1+1=3\)

\(i=2\)\(S=1+2(1+2\times1)=1\times2^2+1\times2^1+1=7\)

\(i=3\)\(S=1+2(1+2(1+2\times1))=1\times2^3+1\times2^2+1\times2^1+1=15\)

例3

将十进制数23转化为二进制数。

分析:用短除法,除2取余数,倒过来读余数即可,比如\(23=2\times 11+1\)\(11=2\times 5+1\)\(5=2\times 2+1\)\(2=2\times 1+0\)\(1=2\times 0+1\)

将每次的余数倒过来读数就得到\(23_{(10)}=10111_{(2)}\)

例4

  • 把七进制数\(1325_{(7)}\)转化为十进制数为________.

分析:\(1325_{(7)}=1\times7^3+3\times7^2+2\times7^1+5\times7^0=509_{(10)}\)

  • 将十进制数509转化为七进制数。

分析:用短除法,除7取余数,倒过来读余数即可,比如\(509=7\times 72+5\)\(72=7\times 10+2\)\(10=7\times 1+3\)\(1=7\times 0+1\)

将每次的余数倒过来读数就得到\(509_{(10)}=1325_{(7)}\)

Cnblogs_N08.bmp

例5【2019届高三理科数学课时作业】

若对于定义在\(R\)上的函数\(f(x)\),其图像是连续不断的,且存在常数\(\lambda(\lambda\in R)\),使得\(f(x+\lambda)+\lambda f(x)=0\)对任意实数\(x\)都成立,则称\(f(x)\)是一个“\(\lambda—\)伴随函数”,有下列关于“\(\lambda—\)伴随函数”的结论:①\(f(x)=0\)是常数函数中唯一一个“\(\lambda—\)伴随函数”;②\(f(x)=x\)不是“\(\lambda—\)伴随函数”;③\(f(x)=x^2\)是“\(\lambda—\)伴随函数”;④“\(\cfrac{1}{2}—\)伴随函数”至少有一个零点。其中不正确的序号是:①③.

分析:①设\(f(x)=c(c\neq 0,c为常数)\),则由新定义可知\(c+\lambda c=0\)\(\lambda=-1\)时,对任意实数\(x\)都成立,故常函数\(f(x)=c(c\neq 0,c为常数)\)就是“\(\lambda—\)伴随函数”,当然函数\(f(x)=0\)也是“\(\lambda—\)伴随函数”,故①错误;

②即要满足\(x+\lambda+\lambda x=0\)对任意实数\(x\)都成立,当\(\lambda=-1\)时,并不能使得此式对对任意实数\(x\)都成立,故\(f(x)=x\)不是“\(\lambda—\)伴随函数”,故②正确;

③即要满足\((x+\lambda)^2+\lambda x^2=0\)对任意实数\(x\)都成立,即\((1+\lambda)x^2+2\lambda x+(\lambda)^2=0\)要对任意实数\(x\)都成立,此处最多有两个实数满足,对任意实数显然不成立,故③错;

④由题目知,\(f(x+\cfrac{1}{2})+\cfrac{1}{2}f(x)=0\)对任意实数\(x\)恒成立,令\(x=-\cfrac{1}{4}\),则\(f(\cfrac{1}{4})+\cfrac{1}{2}f(-\cfrac{1}{4})=0\),此时若\(f(\cfrac{1}{4})、f(-\cfrac{1}{4})\)都为零,则满足题意;若二者都不为零,则\(f(\cfrac{1}{4})、f(-\cfrac{1}{4})\)必然符号相反,在区间\((-\cfrac{1}{4},\cfrac{1}{4})\)上至少有一个零点,故④正确。

例6【2019届高三理科数学课时作业】

具有性质:\(f(\cfrac{1}{x})=-f(x)\)的函数,我们称为满足“倒负”变换的函数,下列函数:
\(f(x)=x-\cfrac{1}{x}\)

\(f(x)=x+\cfrac{1}{x}\)

\(f(x)=\begin{cases}x,&0<x<1\\0,&x=1\\-\frac{1}{x},&x>1\end{cases}\)

其中满足“倒负”变换的函数是哪些?

分析:①对于\(f(x)=x-\cfrac{1}{x}\)而言,\(f(\cfrac{1}{x})=\cfrac{1}{x}-x=-f(x)\),故满足题意,

②对于\(f(x)=x+\cfrac{1}{x}\)而言,\(f(\cfrac{1}{x})=\cfrac{1}{x}+x=f(x)\),故不满足题意,

③对于分段函数\(f(x)=\begin{cases}x,&0<x<1\\0,&x=1\\-\cfrac{1}{x},&x>1\end{cases}\)而言,需要分段处理。

\(0<x<1\)时,\(f(x)=x,f(\cfrac{1}{x})=-\cfrac{1}{\cfrac{1}{x}}=-x\),则有\(f(\cfrac{1}{x})=-f(x)\)

\(x=1\)时,\(f(x)=0,f(\cfrac{1}{x})=0\),则也有\(f(\cfrac{1}{x})=-f(x)\)

\(x>1\)时,\(f(x)=-\cfrac{1}{x},f(\cfrac{1}{x})=\cfrac{1}{x}\),则也有\(f(\cfrac{1}{x})=-f(x)\)

综上当\(x>0\)时,都有\(f(\cfrac{1}{x})=-f(x)\);故函数满足“倒负”变换。

因此,本题中满足“倒负”变换的函数有①③。

例7【2017年宝鸡中学第一次月考】

若函数\(f(x)\)满足:“对于区间\((1,2)\)上的任意实数\(x_1,x_2(x_1\neq x_2)\)\(|f(x_2-x_1)|<|x_2-x_1|\)恒成立”,就称函数\(f(x)\)为完美函数,给出下列四个函数,其中是完美函数的是(①③)
\(f(x)=\cfrac{1}{x}\);② \(f(x)=|x|\);③ \(f(x)=x^2-3x\);④\(f(x)=2^x\)
法1:利用定义求解,从数的角度
对①而言,\(|f(x_2)-f(x_1)|=|\cfrac{1}{x_2}-\cfrac{1}{x_1}|=|\cfrac{x_2-x_1}{x_1x_2}|<|x_2-x_1|\),故①是完美函数;
对②而言,\(|f(x_2)-f(x_1)|=||x_2||-|x_1||=|x_2-x_1|<|x_2-x_1|\)不成立,故②不是完美函数;
对③而言,\(|f(x_2)-f(x_1)|=|(x_2)^2-3x_2-(x_1)^2+3x_1|=|(x_2-x_1)\cdot(x_2+x_1)-3(x_2-x_1)|=|x_1+x_2-3|\cdot|x_2-x_1|<|x_2-x_1|\),其中\(|x_1+x_2-3|<1\);故③是完美函数;
对④而言,\(|f(x_2)-f(x_1)|=|2^{x_2}-2^{x_1}|\),不妨设\(x_1<x_2\),令\(g(x)=2^x-x\),则\(g'(x)=2^xln2-1>0\),由于\(g'(x)_{min}=g'(1)=2ln2-1=ln4-1>0\),则函数\(g(x)\)\((1,2)\)上单调递增,故有\(2^{x_2}-x_2>2^{x_1}-x_1\),即\(2^{x_2}-2^{x_1}>x_2-x_1\),即\(|2^{x_2}-2^{x_1}|>|x_2-x_1|\),故④不是完美函数。

法2:利用导数的几何意义,从形上入手。由于\(|f(x_2)-f(x_1)|<|x_2-x_1|\)恒成立,即\(|\cfrac{f(x_2)-f(x_1)}{x_2-x_1}|<1\),由于割线的斜率的极限是切线的斜率,故我们只有求解给定函数的导数的最大值或者最小值的绝对值小于1即可,

对①而言,由于\(f'(x)=-\cfrac{1}{x^2}\),故\(|f'(x)|<1\),故①是完美函数;

对②而言,由于\(f'(x)=1\),不满足\(|f'(x)|<1\),故②不是完美函数;

对③而言,由于\(f'(x)=2x-3\)\(|f'(x)|<1\),故③是完美函数;

对④而言,由于\(f'(x)=2^xln2\),故不满足\(|f'(x)|<1\),故④不是完美函数;

例8

定义新运算"⊕",当\(a\ge b\)时,\(a⊕b=a\);当\(a<b\)时,\(a⊕b=b^2\);则函数\(f(x)=(1⊕x)x-(2⊕x),x\in[-2,2]\)的最大值是多少?

分析:由题目知道\(a⊕b=\begin{cases}a,&a\ge b\\b^2,&a<b \end{cases}\),由此知道\(1⊕x=\begin{cases}1,&1\ge x\\x^2,&1<x \end{cases}\),又由于\(x\in[-2,2]\)

故得到\(1⊕x=\begin{cases}1,&-2\leq x\leq 1\\x^2,&1<x\leq 2 \end{cases}\),同理,\(2⊕x=\begin{cases}2,&2\ge x\\x^2,&2<x \end{cases}\),又由于\(x\in[-2,2]\),故\(2⊕x=2,x\in [-2,2]\)

\(f(x)=(1⊕x)x-(2⊕x)=\begin{cases}1\cdot x-2&-2\leq x\leq 1\\x^2\cdot x-2&1<x\leq 2 \end{cases}=\begin{cases}x-2&-2\leq x\leq 1\\x^3-2&1<x\leq 2 \end{cases}\),从而利用分段函数求得\(f(x)_{max}=6\)

例9【2017\(\cdot\)华南师大调研】

德国著名数学家狄利克雷在数学领域成就显著,以其名字命名的函数\(f(x)=\begin{cases}1,x\in Q\\0,x\in C_RQ\end{cases}\)称为狄利克雷函数,关于函数\(f(x)\)有以下的四个命题,哪些是真命题?

\(f(f(x))=1\)

②函数\(f(x)\)是偶函数;

③任意一个非零有理数\(T\),对\(\forall x\in R\)都有\(f(x+T)=f(x)\)恒成立;

④存在三个点\(A(x_1,f(x_1))\)\(B(x_2,f(x_2))\)\(C(x_3,f(x_3))\),使得\(\Delta ABC\)为等边三角形。

分析:由于狄利克雷函数是个分段函数,所以凡是涉及求值的问题,一般都得分类讨论。

①当\(x\in Q\)时,\(f(x)=1\),则\(f(f(x))=f(1)=1\)

\(x\in C_RQ\)时,\(f(x)=0\),则\(f(f(x))=f(0)=1\);故真命题。

②当\(x\in Q\)时,则\(-x\in Q\)时,\(f(-x)=1\),则\(f(x)=1\),有\(f(-x)=f(x)\)成立;

\(x\in C_RQ\)时,则\(-x\in C_RQ\)时,\(f(-x)=0\),则\(f(x)=0\),有\(f(-x)=f(x)\)成立;

\(f(-x)=f(x)\)恒成立,是偶函数,真命题。

③当\(x\in Q\)时,对任意一个非零有理数\(T\),都有\(x+T\in Q\)时,\(f(x+T)=1\)\(f(x)=1\),有\(f(x+T)=f(x)\)成立;

\(x\in C_RQ\)时,对任意一个非零有理数\(T\),都有\(x+T\in C_RQ\)时,\(f(x+T)=0\)\(f(x)=0\),有\(f(x+T)=f(x)\)成立;真命题;

992978-20180325153636680-322783234.png

④如图所示,取\(A(2-\sqrt{a},0)\)\(B(2+\sqrt{a},0)\)\(C(2,1)\),则此时\(\Delta ABC\)只是等腰三角形,

但是当点\(A、B\)都向其中点聚拢时,由实数的无限稠密性,总有一个恰当的\(a\)值,

使得\(\Delta ABC\)为等边三角形。真命题;

或这样求解,点\(A(-\cfrac{\sqrt{3}}{3},0)\),点\(B(\cfrac{\sqrt{3}}{3},0)\),点\(C(0,1)\)

计算可知,\(\Delta ABC\)为边长为\(\cfrac{2\sqrt{3}}{3}\)的等边三角形,真命题。

例10

若函数\(f(x)\)对其定义域内的任意\(x_1,x_2\),当\(f(x_1)=f(x_2)\)时总有\(x_1=x_2\),则称\(f(x)\)为紧密函数,例如函数\(f(x)=lnx(x>0)\)是紧密函数,下列命题:

①紧密函数必是单调函数;②函数\(f(x)=\cfrac{x^2+2x+a}{x}(x>0)\)\(a<0\)时是紧密函数;

③函数\(f(x)=\left\{\begin{array}{l}{log_2x,x≥2}\\{2-x,x<2}\end{array}\right.\)是紧密函数;

④若函数\(f(x)\)为定义域内的紧密函数,\(x_1≠x_2\),则\(f(x_1)≠f(x_2)\)

⑤若函数\(f(x)\)是紧密函数且在定义域内存在导数,则其导函数\(f′(x)\)在定义域内的值一定不为零.

其中的真命题是(  )

$A.②④$ $B.①②$ $C.②④⑤$ $D.①②③⑤$

【分析】新定义习题,充分理解给定的新定义,再结合映射的概念,就容易理解了。具体解答详见下述解答。

【解答】

对于选项①而言,由于函数\(f(x)\)对其定义域内的任意\(x_1,x_2\),当\(f(x_1)=f(x_2)\)时总有\(x_1=x_2\),则称\(f(x)\)为紧密函数,
则紧密函数\(f(x)\)的自变量与函数值是一 一映射,故单调函数一定是紧密函数,但紧密函数不一定是单调的,比如函数\(y=\frac{1}{x}\),是按照定义判断是紧密函数,但是其不是单调函数,故①错误;
对于选项②而言,函数\(f(x)=\frac{x^2+2x+a}{x}(x>0)\)\(a<0\)时是单调递增函数,故一定是紧密函数,故②正确;
对于选项③而言,函数\(f(x)=\left\{\begin{array}{l}{log3x,x≥2}\\{2-x,x<2}\end{array}\right.\)不是一 一映射,故不是紧密函数,故③错误;
对于选项④而言,若函数\(f(x)\)为定义域内的紧密函数,由一一映射可知,若\(x_1≠x_2\),则\(f(x_1)≠f(x_2)\),故④正确;
对于选项⑤而言,函数\(f(x)=x^3\)是紧密函数且在定义域内存在导数,但是其导函数\(f′(x)=3x^2\)在定义域内的\(x=0\)处的值为零,故⑤错误;
综上所述,真命题为②④,故选选项A。

【点评】新定义习题,是最能考查学生的数学素养的一类素材,对许多学生都有一定的难度。在学习是,对于学习过的一些简单而又特殊的函数,我们需要特别加以关注,如函数\(y=|x|\),在\(x=0\)处无导数,但是在\(x=0\)处却是有极值的;函数\(y=\frac{1}{x}\),在定义域内无单调性,函数\(y=x^3\)在定义域内单调递增,其导函数\(y'=3x^2\ge 0\),等等,都是需要我们注意的,这对于深入理解数学概念,廓清我们的混沌认识很有帮助。

例11

已知定义域为\([0,1]\)的函数\(f(x)\)同时满足以下三个条件:
①对任意的\(x∈[0,1]\),总有\(f(x)≥0\)
\(f(1)=1\)
③若\(x_1≥0\)\(x_2≥0\)\(x_1+x_2≤1\),则有\(f(x_1+x_2)≥f(x_1)+f(x_2)\)成立,则称\(f(x)\)为“友谊函数”.

(1)若已知\(f(x)\)为“友谊函数”,求\(f(0)\)的值.

(2)分别判断函数\(g(x)=x^2\)\(h(x)=3x+1\)在区间\([0,1]\)上是否为“友谊函数”,并给出理由.

(3)已知\(f(x)\)为“友谊函数”,且\(0≤x_1<x_2≤1\),求证:\(f(x_1)≤f(x_2)\)

【分析】

(1)围绕给定的新定义“友谊函数”,结合赋值和夹逼原则,求得\(f(0)\)的值。

(2)对给定的两个具体函数,用“友谊函数”的三条要求逐一验证即可。

(3)将\(x_2\)拆分为\(x_2-x_1+x_1\),且结合\(f(x_2-x_1)\ge 0\),就可以证明。

【解答】

(1)已知\(f(x)\)为“友谊函数”,则当\(x_1\ge 0,x_2\ge 0\)\(x_1+x_2\leq 1\),有\(f(x_1+x_2)≥f(x_1)+f(x_2)\)成立,

\(x_1=0,x_2=0\),则有\(f(0+0)\ge f(0)+f(0)\),解得\(f(0)\leq 0\)

又对任意的\(x∈[0,1]\),总有\(f(x)≥0\),则有\(f(0)\ge 0\)

\(f(0)\ge 0\)\(f(0)\leq 0\),得到\(f(0)=0\).

(2)对函数\(g(x)=x^2\)而言,在\([0,1]\)上显然满足①\(g(x)\ge 0\),②\(g(1)=1\),重点是验证③,

\(x_1≥0\)\(x_2≥0\)\(x_1+x_2≤1\),则有\(g(x_1+x_2)-[g(x_1)+g(x_2)]=(x_1+x_2)^2-x_1^2-x_2^2=2x_1x_2\ge0\)

\(g(x_1+x_2)\ge g(x_1)+g(x_2)\),故函数\(g(x)\)满足条件③;

这样函数\(g(x)\)同时满足条件①②③,故\(g(x)=x^2\)为友谊函数。

对函数\(h(x)=3x+1\)而言,在\([0,1]\)上显然满足①\(g(x)\ge 0\)

但是当\(x=1\)时,\(h(1)=4\),不满足定义中的②,故函数\(h(x)=3x+1\)不是友谊函数。

(3)证明:由于\(0≤x_1<x_2≤1\),则有\(0<x_2-x_1<1\)

又由于函数\(f(x)\)为“友谊函数”,则$f(x_2-x_1)\ge 0 $

\(f(x_2)=f(x_2-x_1+x_1)=f[(x_2-x_1)+x_1] \ge f(x_1)\)

\(f(x_1)\leq f(x_2)\)

【点评】

(1)新定义题目,考查学生对数学概念的快速理解和应用能力,对学生的数学素养要求比较高。

(2)考查学生对新定义的应用能力,用来判断一个函数是否同时满足三个条件。

(3)充分运用给定的条件和已有的知识储备,证明一个新的结论,也算是对新数学概念的拓展,对学生的素养要求比较高。

例12【2019届高三理科数学函数及其表示课时作业第8题】

若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“同族函数”。则函数解析式为\(y=x^2+1\),值域为\(\{1,3\}\)的同族函数有_____个。

分析:本题目实质是考查有几种不同的满足题意定义域形式,

\(x^2+1=1\),解得\(x=0\);令\(x^2+1=3\),解得\(x=\pm \sqrt{2}\)

要保证值域为\(\{1,3\}\),则\(0\)是必选的,\(\pm \sqrt{2}\)可以二选一,或者全选,

故不同的定义域形式有\(\{0,\sqrt{2}\}\)\(\{0,-\sqrt{2}\}\)\(\{0,\pm\sqrt{2}\}\)三种,

故函数解析式为\(y=x^2+1\),值域为\(\{1,3\}\)的同族函数有\(3\)个。

例132019届高三理科数学资料题目】

对于函数\(f(x)\),若存在区间\(A=[m,n]\),使得\(\{y\mid y=f(x),x∈A\}=A\),则称函数\(f(x)\)为“同域函数”,区间\(A\)为函数\(f(x)\)的一个“同域区间”.

给出下列四个函数:

\(f(x)=cos\cfrac{\pi}{2}x\);②\(f(x)=x^2-1\);③\(f(x)=|x^2-1|\);④\(f(x)=log_2(x-1)\)

存在“同域区间”的“同域函数”的是________.(请写出所有正确的序号)

分析:区间\(A\)不一定是定义域或值域,但一定是定义域的子集。

故我们可以借助图像来解答此问题,如下图所示:

①中,取\(A=[0,1]\),则\(x\in [0,1]\)\(f(x)\in [0,1]\),故是同域函数;

②中,取\(A=[-1,0]\),则\(x\in [-1,0]\)\(f(x)\in [-1,0]\),故是同域函数;

③中,取\(A=[0,1]\),则\(x\in [0,1]\)\(f(x)\in [0,1]\),故是同域函数;

④中不存在这样的区间\(A\),故不是同域函数;

下面加以证明,对④而言,设存在这样的区间\(A=[m,n]\),由于\(f(x)=log_2(x-1)\)

定义域为\((1,+\infty)\),且单调递增,

故有\(f(m)=m\),且有\(f(n)=n\)

\(log_2(m-1)=m\),且\(log_2(n-1)=n\)

\(\left\{\begin{array}{l}{2^m=m-1}\\{2^n=n-1}\end{array}\right.\)

若该方程组有解,则方程\(2^x=x-1\)应该有两个不同的实数解,

分别做出函数\(y=2^x\)和函数\(y=x-1\)的图像,显然两个图像没有公共点,

故不存在这样的区间\(A\),满足题意。

故满足题意的有①②③;

例14【2019高三理科数学第二次月考跟踪训练第12题】【2018南昌检测】

若函数\(f(x)\)满足\(f(a+x)+f(a-x)=2b\),其中\(a,b\)不同时为零,则称函数\(y=f(x)\)为“准奇函数”,称点\((a,b)\)为函数\(f(x)\)的中心点。现有如下命题:

①函数\(f(x)=sinx+1\)为准奇函数;

②若准奇函数\(y=f(x)\)\(R\)上的"中心点"为\((a,f(a))\),则函数\(F(x)=f(x+a)-f(a)\)\(R\)上的奇函数;

③已知函数\(f(x)=x^3-3x^2+6x-2\)是准奇函数,则它的“中心点”为\((1,2)\)

其中正确的命题是_________。①②③

分析:

对①而言,由于\(f(\pi+x)+f(\pi-x)=sin(\pi+x)+1+sin(\pi-x)+1=-sinx+1+sinx+1=2\)

\(f(x)\)是准奇函数,且中心点为\((\pi,1)\)。故①正确;

对②而言,由于准奇函数\(y=f(x)\)\(R\)上的"中心点"为\((a,f(a))\)

则有\(f(a+x)+f(a-x)=2f(a)\)

\(F(-x)+F(x)=f(-x+a)-f(a)+f(x+a)-f(a)=2f(a)-2f(a)=0\),故\(F(x)\)\(R\)上的奇函数;故②正确;

③函数\(f(x)=x^3-3x^2+6x-2\),则\(f(1+x)=(1+x)^3-3(1+x)^2+6(1+x)-2\)

\(f(1-x)=(1-x)^3-3(1-x)^2+6(1-x)-2\),这样得到,

\(f(1+x)+f(1-x)=4=2\times 2\),故函数\(f(x)\)是准奇函数,且它的“中心点”为\((1,2)\);故③正确;

例15【2019届高三理科数学课时作业】

定义\(\cfrac{n}{p_1+p_2+\cdots+p_n}\)\(n\)个正数\(p_1,p_2,\cdots,p_n\)的“均倒数”。若已知正项数列\(\{a_n\}\)的前\(n\)项和的“均倒数”为\(\cfrac{1}{2n+1}\),又\(b_n=\cfrac{a_n+1}{4}\),则\(\cfrac{1}{b_1b_2}+\cfrac{1}{b_2b_3}+\cfrac{1}{b_3b_4}+\cdots+\cfrac{1}{b_{10}b_{11}}\)=【】

$A.\cfrac{1}{11}$ $B.\cfrac{1}{12}$ $C.\cfrac{10}{11}$ $D.\cfrac{11}{12}$

分析:由新定义可知,\(\cfrac{n}{p_1+p_2+\cdots+p_n}=\cfrac{1}{2n+1}\),则有\(S_n=n(2n+1)\)

\(a_n\)\(S_n\)的关系可知,\(a_n=4n-1\),故\(b_n=\cfrac{a_n+1}{4}=n\)

\(\cfrac{1}{b_1b_2}+\cfrac{1}{b_2b_3}+\cfrac{1}{b_3b_4}+\cdots+\cfrac{1}{b_{10}b_{11}}\)

\(=[(1-\cfrac{1}{2})+(\cfrac{1}{2}-\cfrac{1}{3})+\cdots+(\cfrac{1}{10}-\cfrac{1}{11})]=\cfrac{10}{11}\)

故选\(C\)

例16【2019届高三理科数学二轮复习用题】若数列\(\{a_n\}\)满足:对任意的\(n\in N^*\)\(n\ge 3\),总存在\(i,j\in N^*\),使得\(a_n=a_i+a_j\)\(i\neq j,i<n,j<n\),则称数列\(\{a_n\}\)为"\(T\)数列",现有以下四个数列:①\(\{2n\}\),②\(\{n^2\}\),③\(\{3^n\}\),④\(\{(\cfrac{\sqrt{5}-1}{2})^{n-1}\}\),其中是"\(T\)数列"的有【】个

$A.0$ $B.1$ $C.2$ $D.3$

分析:本题目主要考查对数列的拆分,必须按照题目的要求进行有效的拆分;

对于①而言,\(a_n=2n\),则 \(a_{n+2}=2(n+2)=2[(n+1)+1]=2(n+1)+2\times 1=a_{n+1}+a_1\),故\(a_n=2n\)为"\(T\)数列";

对于②而言,\(a_n=n^2\),我们可以考虑让其下标满足的最小的情形,故做这样的尝试,当\(n,i,j\)依次取值为\(3,2,1\)时,\(a_1=1^2\)\(a_2=2^2\)\(a_3=3^2\),并不满足\(a_n=a_i+a_j\),都\(a_n=n^2\)不是"\(T\)数列";

对于③而言,\(a_n=3^n\),我们可以考虑让其下标满足的最小的情形,故做这样的尝试,当\(n,i,j\)依次取值为\(3,2,1\)时,\(a_1=3^1\)\(a_2=3^2\)\(a_3=3^3\),并不满足\(a_n=a_i+a_j\),都\(a_n=3^n\)不是"\(T\)数列";

对于④而言,\(a_n=(\cfrac{1-\sqrt{5}}{2})^{n-1}\),则\(a_{n+2}-a_n=(\cfrac{1-\sqrt{5}}{2})^{n+1}-(\cfrac{1-\sqrt{5}}{2})^{n-1}=(\cfrac{1-\sqrt{5}}{2})^{n-1}[(\cfrac{1-\sqrt{5}}{2})^{2}-1]\)

\(=(\cfrac{1-\sqrt{5}}{2})^{n-1}\cfrac{1-\sqrt{5}}{2}=(\cfrac{1-\sqrt{5}}{2})^{n}=a_{n+1}\)

\(a_{n+2}=a_{n+1}+a_n\),故数列\(a_n=(\cfrac{1-\sqrt{5}}{2})^{n-1}\)为"\(T\)数列";

综上所述,满足"\(T\)数列"的有2个,故选\(C\).

例17【2019届高三理科数学三轮模拟训练用题】2018年8月10日至12日,第八届全国数学文化论坛学术会议在山东大学(威海)顺利召开,深圳大学张文俊教授在大会上做了题为《斐波那契数列中的文化元素》的报告,斐波那契数列指的是这样一个数列:1,1,2,3,5,8,13,21,34,55,\(\cdots\),下图给出了斐波那契数列\(\{a_n\}\)的一条性质,无需文字的证明,则\(a_1^2+a_2^2+a_3^2+\cdots+a_{12}^2\)= 【】

$A.4895$ $B.12816$ $C.33552$ $D.87841$

分析:斐波那契数列为:1,1,2,3,5,8,13,21,34,55,89,144,\(\cdots\),由所给的图形可知,

\(1^2+1^2+2^2\)时的结果对应的形为矩形的面积,矩形的长和宽分别为\((1+2)\)\(2\),其值为\((1+2)\times 2\)

\(1^2+1^2+2^2+3^2\)时的结果对应的形为矩形的面积,矩形的长和宽分别为\((2+3)\)\(3\),其值为\((2+3)\times 3\)

\(1^2+1^2+2^2+3^2+5^2\)时的结果对应的形为矩形的面积,矩形的长和宽分别为\((3+5)\)\(5\),其值为\((3+5)\times 5\)

\(a_1^2+a_2^2+a_3^2+\cdots+a_{12}^2\)的结果对应的形为矩形的面积,矩形的长和宽分别为\((a_{11}+a_{12})\)\(a_{12}\),其值为\((89+144)\times 144=33552\),故选\(C\)

例18【2019届高三理科数学三轮模拟训练用题】定义:椭圆\(\cfrac{x^2}{a^2}+\cfrac{y^2}{b^2}=1(a>b>0)\)中长度为整数的焦点弦(过焦点的弦)为“好弦”,则椭圆\(\cfrac{x^2}{25}+\cfrac{y^2}{9}=1\)的所有“好弦”的长度为【】

$A.162$ $B.166$ $C.312$ $D.364$

分析:椭圆\(\cfrac{x^2}{25}+\cfrac{y^2}{9}=1\)中的最短弦长为通经,最长的弦长为长轴的长,容易计算得到通经长为\(\cfrac{18}{5}=3.6\),则椭圆的弦从最短的弦变化为最长的弦的过程中,得到的好弦的长度分别为\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)

而且由于椭圆关于\(x\)轴对称,故有两组,又由于焦点有两个,故还有两组,故共有四组,其和为\((4+5+6\) \(+7+8+9+\) \(10)\times 4\) \(=196\),但是上述的计算过程中将最长的好弦(即长轴)多计算了3次,故所求为\(196-30=166\),故选\(B\)

例19【2019届高三理科数学三轮模拟训练用题】

转载于:https://www.cnblogs.com/wanghai0666/p/6813411.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值