R语言 典型相关分析

1 关键点:#典型相关分析#
#典型相关分析是用于分析两组随机变量之间的相关程度的一种统计方法,它能够有效地揭示两组随机变量之间的相互(线性依赖)关系
#例如 研究生入学考试成绩与本科阶段一些主要课程成绩的相关性
#将研究两组变量的相关性问题转化为研究两个变量的相关性问题 此类相关为典型相关#

2 分类:#总体典型相关#样本典型相关

3 R语言提供的计算函数:

#典型相关计算 cancor(x,y,xcenter=TRUE,ycenter=TRUE)
#x,y是相应的数据矩阵 xcenter,ycenter是逻辑变量 TRUE是将数据中心化 FALSE是不中心化

4 分析结果含义

#cor是典型相关系数

#xcoef是对应于数据x的系数 又称关于数据x的典型载荷即样本典型变量U系数矩阵A的转置
#xcenter是数据X的中心 即数据X的样本均值

#y是对应于数据x的系数 又称关于数据y的典型载荷即样本典型变量V系数矩阵B的转置
#ycenter是数据Y的中心 即数据Y的样本均值

4 分析步骤

#1.载入原始数据 data.frame
#2.原始数据标准化 scale
#3.典型相关分析 cancor

#4.相关系数显著性检验 corcoef.test.R

5 案例

#现对20名中年人测得三个生理指标:体重(X1) 腰围(X2) 脉搏(X3)
#三个训练指标:引体向上(Y1) 起座次数(Y2) 跳跃次数(Y3) 试分析这组数据的相关性

#用数据框的形式输入数据
test<-data.frame(
X1=c(191, 193, 189, 211, 176, 169, 154, 193, 176, 156,
189, 162, 182, 167, 154, 166, 247, 202, 157, 138),
X2=c(36, 38, 35, 38, 31, 34, 34, 36, 37, 33,
37, 35, 36, 34, 33, 33, 46, 37, 32, 33),
X3=c(50, 58, 46, 56, 74, 50, 64, 46, 54, 54,
52, 62, 56, 60, 56, 52, 50, 62, 52, 68),
Y1=c( 5, 12, 13, 8, 15, 17, 14, 6, 4, 15,
2, 12, 4, 6, 17, 13, 1, 12, 11, 2),
Y2=c(162, 101, 155, 101, 200, 120, 215, 70, 60, 225,
110, 105, 101, 125, 251, 210, 50, 210, 230, 110),
Y3=c(60, 101, 58, 38, 40, 38, 105, 31, 25, 73,
60, 37, 42, 40, 250, 115, 50, 120, 80, 43)
)

#为了消除数量级的影响 将数据标准化处理 调用scale函数
test<-scale(test)
#对标准化的数据做典型相关分析
ca<-cancor(test[,1:3],test[,4:6])
#查看分析结果
ca

R语言 <wbr>典型相关分析

#计算数据在典型变量下的得分 U=AX V=BY
U<-as.matrix(test[, 1:3])%*% ca$xcoef
V<-as.matrix(test[, 4:6])%*% ca$ycoef
#画出U1、V1和U3、V3为组表的数据散点图
plot(U[,1], V[,1], xlab=”U1″, ylab=”V1″)
plot(U[,3], V[,3], xlab=”U3″, ylab=”V3″)

R语言 <wbr>典型相关分析

由散点图可知 第一典型相关变量分布在一条直线附近 ;第三典型相关变量数据很分散。
#典型相关系数的显著性检验
#作为相关分析的目的 就是选择多少对典型变量?因此需要做典型相关系数的显著性检验
#若认为相关系数k为0 就没有必要考虑第k对典型变量了

#相关系数检验R程序
source(“E:/R/corcoef.test.R”)
corcoef.test(r=ca$cor,n=20,p=3,q=3)

最终程序运行结果显示选择第一对典型相关变量。

典型相关系数检验 R语言程序 corcoef.test.R 将其保存在计算机的E盘的R文件夹下

corcoef.test<-function(r, n, p, q, alpha=0.1){
#r为相关系数 n为样本个数 且n>p+q
m<-length(r); Q<-rep(0, m); lambda <- 1
for (k in m:1){
lambda<-lambda*(1-r[k]^2); #检验统计量
Q[k]<- -log(lambda) #检验统计量取对数
}
s<-0; i<-m
for (k in 1:m){
Q[k]<- (n-k+1-1/2*(p+q+3)+s)*Q[k] #统计量
chi<-1-pchisq(Q[k], (p-k+1)*(q-k+1))
if (chi>alpha){
i<-k-1; break
}
s<-s+1/r[k]^2
}
i #显示输出结果 选用第几对典型变量
}

  • 3
    点赞
  • 0
    评论
  • 13
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
本程序是在python中完成,基于sklearn.cluster中的k-means聚类包来实现数据的聚类,对于里面使用的数据格式如下:(注意更改程序中的相关参数) 138 0 124 1 127 2 129 3 119 4 127 5 124 6 120 7 123 8 147 9 188 10 212 11 229 12 240 13 240 14 241 15 240 16 242 17 174 18 130 19 132 20 119 21 48 22 37 23 49 0 42 1 34 2 26 3 20 4 21 5 23 6 13 7 19 8 18 9 36 10 25 11 20 12 19 13 19 14 5 15 29 16 22 17 13 18 46 19 15 20 8 21 33 22 41 23 69 0 56 1 49 2 40 3 52 4 62 5 54 6 32 7 38 8 44 9 55 10 70 11 74 12 105 13 107 14 56 15 55 16 65 17 100 18 195 19 136 20 87 21 64 22 77 23 61 0 53 1 47 2 33 3 34 4 28 5 41 6 40 7 38 8 33 9 26 10 31 11 31 12 13 13 17 14 17 15 25 16 17 17 17 18 14 19 16 20 17 21 29 22 44 23 37 0 32 1 34 2 26 3 23 4 25 5 25 6 27 7 30 8 25 9 17 10 12 11 12 12 12 13 7 14 6 15 6 16 12 17 12 18 39 19 34 20 32 21 34 22 35 23 33 0 57 1 81 2 77 3 68 4 61 5 60 6 56 7 67 8 102 9 89 10 62 11 57 12 57 13 64 14 62 15 69 16 81 17 77 18 64 19 62 20 79 21 75 22 57 23 73 0 88 1 75 2 70 3 77 4 73 5 72 6 76 7 76 8 74 9 98 10 90 11 90 12 85 13 79 14 79 15 88 16 88 17 81 18 84 19 89 20 79 21 68 22 55 23 63 0 62 1 58 2 58 3 56 4 60 5 56 6 56 7 58 8 56 9 65 10 61 11 60 12 60 13 61 14 65 15 55 16 56 17 61 18 64 19 69 20 83 21 87 22 84 23 41 0 35 1 38 2 45 3 44 4 49 5 55 6 47 7 47 8 29 9 14 10 12 11 4 12 10 13 9 14 7 15 7 16 11 17 12 18 14 19 22 20 29 21 23 22 33 23 34 0 38 1 38 2 37 3 37 4 34 5 24 6 47 7 70 8 41 9 6 10 23 11 4 12 15 13 3 14 28 15 17 16 31 17 39 18 42 19 54 20 47 21 68 22
©️2021 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值