tensorflow 出现 tensorflow.python.framework.errors_impl.NotFoundError(dataset_ops.so not found)...

运行环境

  • Windows 10
  • Python3.6
  • Tensorflow 1.9.0

错误代码

tf.add_to_collection('losses', tf.contrib.layers.l2_regularizer(regularizer)(w))

出现错误

tensorflow.python.framework.errors_impl.NotFoundError: D:\Users\Administrator\Anaconda3\lib\site-packages\tensorflow\contrib\data\python\ops...._dataset_ops.so not found

解决方法

到tensorflow/contrib/data目录下删除**_dataset_ops.so** 演示图片

转载于:https://my.oschina.net/chenmoxuan/blog/2995770

### 回答1: tensorflow.python.framework.errors_impl.notfounderrorTensorFlow框架中的一个错误类型,表示找不到指定的文件或目录。可能是由于文件或目录被删除、移动或重命名,或者路径不正确等原因导致的。需要检查路径是否正确,文件或目录是否存在,并进行相应的修复或调整。 ### 回答2: tensorflow.python.framework.errors_impl.notfounderror属于tensorflow的一种错误类型,意为某个需要的资源未找到。具体而言,可能是以下几种情况: 1.文件路径不正确或文件不存在:在使用tensorflow时,有时需要调用一些外部文件,例如预训练好的模型、图片数据等,若文件路径出错或文件不存在,就会出现notfounderror。 2.缺失依赖包或库:tensorflow是建立在许多第三方库的基础之上的,如果这些依赖包或库没有正确安装且配置,就可能出现notfounderror。 3.参数配置出错:在使用tensorflow时,有些参数需要按照一定的规范进行配置,如果在使用过程中,这些参数没有正确配置或者配置的方式不符合规范,也可能会出现资源未找到的错误。 针对notfounderror出现的解决方案有: 1.检查文件路径及文件名是否正确,确保文件存在。 2.检查依赖包或库是否正确安装,并按照要求进行配置。 3.重新配置参数,确保参数设置符合规范。 在开发过程中,出现notfounderror等错误类型是比较常见的,需要多做一些调试和排查工作。此外,通过阅读tensorflow文档以及相关的Stack Overflow解答等资料,对于解决类似notfounderror的错误非常有帮助。 ### 回答3: 当使用 TensorFlow 框架进行深度学习模型的训练和预测时,有时候会遇到一些错误。其中之一就是 `tensorflow.python.framework.errors_impl.notfounderror`,也就是模型或者其他相关文件不存在的错误。 在 TensorFlow 中,通常会使用不同的文件来保存模型的不同部分,如网络结构、权重、配置等。在使用模型的时候,这些文件需要被加载到内存中来进行预测或训练操作。如果这些文件中的任何一个文件不存在,就会抛出 `tensorflow.python.framework.errors_impl.notfounderror` 错误,表示无法找到所需文件。 这个错误通常有两种可能的原因。首先,可能是文件被误删或移到了不合适的位置。如果你在使用模型之前曾经修改过模型文件夹的路径或者删除了其中的一些文件,就可能会导致这个错误的出现。此时,需要检查一下模型文件夹的路径是否正确,并确保所有需要的文件都存在于该路径中。 另一种可能的原因是文件加载出错。在读取模型文件时,有时候会发生文件读取或解析错误,从而导致文件加载失败。此时,可以尝试重新下载或替换模型文件。如果是自己训练的模型出现这个错误,可以尝试重新训练模型并重新生成相应的文件。 总之,解决 `tensorflow.python.framework.errors_impl.notfounderror` 错误的关键是找到出错的原因,从而采取相应的解决措施。在实际的使用过程中,我们需要仔细检查模型文件夹的路径和文件的完整性,并注意各个文件之间的依赖关系,如此才能确保使用 TensorFlow 框架的顺利进行。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值