函数的奇偶性周期性习题

前言

典例剖析

例1已知\(f(x+1)\)是周期为2的奇函数,且当\(-1\leq x\leq 0\)时,\(f(x)=-2x(x+1)\),且\(f(-\cfrac{3}{2})\)的值为_______.

分析:由于函数\(f(x+1)\)是奇函数,故\(f(-x+1)=-f(x+1)\),即\(f(-x+1)+f(x+1)=0\)

故函数\(f(x)\)关于点\((1,0)\)对称,则有\(f(x)+f(2-x)=0\),即\(f(2-x)=-f(x)\)

又函数\(f(x+1)\)是周期函数,故\(f(x)\)也是周期为2的周期函数,

则有\(f(2-x)=f(-x)\),故\(f(-x)=-f(x)\),即函数\(f(x)\)为奇函数,

\(f(-\cfrac{3}{2})=-f(\cfrac{3}{2})=-f(\cfrac{3}{2}-2)\)

\(=-f(-\cfrac{1}{2})=2\cdot(-\cfrac{1}{2})(-\cfrac{1}{2}+1)\)

\(=-\cfrac{1}{2}\)

例2【2015全国二模】已知\(f(x)\)是定义在R上的奇函数,\(f(x+1)\)是偶函数,且当\(x\in(2,4)\)时,\(f(x)=|x-3|\),则\(f(1)+f(2)+f(3)+f(4)\)=________.

分析:由函数\(f(x+1)\)是偶函数,得到\(f(-x+1)=f(x+1)\)

由此得到函数\(f(x)\)关于直线\(x=1\)对称,故有\(f(x)=f(2-x)\)

又函数\(f(x)\)还是奇函数,即\(f(x)=-f(-x)\)

这样得到\(f(2-x)=-f(-x)\),将\(-x\)换为\(x\),于是得到\(f(x+2)=-f(x)\),即周期为4。

由于\(f(x)\)是定义在R上的奇函数,则有\(f(0)=0=f(4)\)

\(f(x)=f(2-x)\)中,令\(x=0\)得到\(f(2)=f(0)=0\),容易得到\(f(3)=0\)

\(f(1)=f(-3)=-f(3)=0\),故\(f(1)+f(2)+f(3)+f(4)=0\).

例3函数\(f(x)\)是周期为4的偶函数,当\(x\in[0,2]\)时,\(f(x)=x-1\),求不等式\(x\cdot f(x)>0\)\([-1,3]\)上的解集。

992978-20170712221900962-402066491.png

分析:自己作图,读图即可解答,解集为\((-1,0)\cup(1,3)\)

法2:还可以利用周期和对称性求得\(f(x)\)的解析式,

代入计算,当然这个方法没有图像法直观快捷。

例4设\(f(x)\)是定义在R上且周期为2的函数,在区间\([-1,1]\)上,\(f(x)=\begin{cases}ax+1,&-1\leq x<0\\\cfrac{bx+2}{x+1},&0\leq x\leq 1\end{cases}\),其中\(a,b\in R\),若\(f(\cfrac{1}{2})=f(\cfrac{3}{2})\),则求\(a+3b\)的值。

分析:本题目容易漏掉的一个条件是\(f(-1)=f(1)\)

例5已知奇函数\(f(x)\)的定义域是\([-2,2]\),且在区间\([-2,0]\)上递减,求满足\(f(1-m)+f(1-m^2)<0\)的实数\(m\)的取值范围。

分析:这类题目一般要考虑定义域和单调性,其中单调性的作用是去掉符号\(f\)

①,由定义域可知,\(-2\leq 1-m\leq 2\)\(-2\leq 1-m^2\leq 2\)

②、为去掉符号\(f\),转化为\(f(1-m)<-f(1-m^2)\),到此还不能顺利利用单调性,

其一奇函数和在区间\([-2,0]\)上递减,得到函数\(f(x)\)在区间\([-2,2]\)上递减,

还需要利用奇函数转化为\(f(1-m)<f(m^2-1)\),这样就能利用单调性去掉符号\(f\)了,

解析:有题目可知\(\begin{cases}-2\leq 1-m\leq 2 ①\\-2\leq 1-m^2\leq 2 ②\end{cases}\)

又函数为奇函数和在区间\([-2,0]\)上递减,得到函数\(f(x)\)在区间\([-2,2]\)上递减,

\(f(1-m)+f(1-m^2)<0\)转化为\(f(1-m)<-f(1-m^2)=f(m^2-1)\),故有\(1-m>m^2-1③\)

联立①②③得到\(m\in [-1,1)\)

例6【2016淄博模拟】设\(f(x),g(x)\)分别是定义在R上的奇函数和偶函数,当\(x<0\)时,\(f'(x)g(x)+f(x)g'(x)>0\),且\(g(-3)=0\),则不等式\(f(x)g(x)<0\)的解集是()
A.\((-3,0)\cup(3,+\infty)\) \(\hspace{1cm}\) B.\((-3,0)\cup(0,3)\) \(\hspace{1cm}\)   C.\((-\infty,-3)\cup(3,+\infty)\) \(\hspace{1cm}\) D.\((-\infty,-3)\cup(0,3)\)

法1分析:令\(h(x)=f(x)g(x)\),则函数\(h(x)\)为奇函数,则\(h'(x)=f'(x)g(x)+f(x)g'(x)\)

由题目可知,当\(x<0\)时,\(h'(x)>0\),即函数\(h(x)\)在区间\((-\infty,0)\)上单调递增,在区间\((0,+\infty)\)上单调递增,

\(g(-3)=0\),则\(h(-3)=f(-3)g(-3)=0\),故在区间\((-\infty,-3)\)\(h(x)<0\),在区间\((-3,0)\)\(h(x)>0\)

\(h(0)=0\)是单独定义的,又由函数\(h(x)\)为奇函数,

992978-20171016190434318-707047980.png

故在区间\((0,3)\)\(h(x)<0\)\(h(3)=0\),在区间\((3,+\infty)\)\(h(x)>0\),

故不等式\(f(x)g(x)<0\)的解集即\(h(x)<0\)的解集为\((-\infty,-3)\cup(0,3)\)

反思总结:注意函数\(h(x)=f(x)g(x)\)的零点有三个\(x=-3、x=0、x=3\)

本题目容易错误的理解为在\((-\infty,0)\)单增,在\((0,+\infty)\)单增,在\(x=0\)处有定义,

那么在\((-\infty,+\infty)\)单增,这样函数\(h(x)\)的零点只有一个,这样的理解是错误的。

只有函数\(h(x)\)\(x=0\)处左右连续,且\(\lim\limits_{x\to 0^+} h(x)=\lim\limits_{x\to 0^-} h(x)=h(0)\)

此时的\(h(x)\)才只有一个零点。
  
法2:由上述解法可知,函数\(h(x)\)\((-\infty,0)\)上单调递减,

\((0,+\infty)\)上单调递增,故由\(h(x)<0=h(-3)\)

\(h(x)<0=h(3)\)得到,解集为\((-\infty,-3)\cup(0,3)\)

例7【2017德州模拟】已知函数\(f(x)\)是定义在R上的奇函数,对任意的\(x,y\in R\),\(2x+3y\neq 0\),都有\(\cfrac{f(x)+f(\frac{3y}{2})}{2x+3y}<0\),若\(2x+3y>0\),则有()
 A.\(f(2x)+f(3y)\leq 0\) \(\hspace{1cm}\)

B.\(f(2x)+f(3y)\ge 0\) \(\hspace{1cm}\)  

C.\(f(2x)+f(3y)< 0\) \(\hspace{1cm}\)

D.\(f(2x)+f(3y)> 0\)

 分析:\(\cfrac{f(x)+f(\cfrac{3y}{2})}{2x+3y}<0\)可变形为 \(\cfrac{f(x)+f(\cfrac{3y}{2})}{x+\cfrac{3y}{2}}<0\)

\(\cfrac{f(x)-f(-\cfrac{3y}{2})}{x-(-\cfrac{3y}{2})}<0\)

\(x_1=x,x_2=-\cfrac{3y}{2}\),则\(\cfrac{f(x_1)-f(x_2)}{x_1-x_2}<0\)

即函数\(f(x)\)为R上的减函数,

结合\(2x>-3y\),可得\(f(2x)<f(-3y)=-f(3y)\)

故有\(f(2x)+f(3y)< 0\)

例8【2016\(\cdot\)成都模拟】已知函数\(f(x)\)是定义在\(R\)上的奇函数,当\(x>0\)时,\(f(x)=1-2^{-x}\),则不等式\(f(x)<-\cfrac{1}{2}\)的解集是()。

A.\((-\infty,-1)\) \(\hspace{2cm}\) B.\((-\infty,-1]\) \(\hspace{2cm}\) C.\((1,+\infty)\) \(\hspace{2cm}\) D.\([1,+\infty)\)

法1:先求得函数\(f(x)\)的解析式,转化为分段函数不等式求解;

\(x<0\)时,则\(-x>0\),故\(f(x)=-f(-x)=-(1-2^x)=-1+2^x\)

故函数\(f(x)\)的解析式为\(f(x)=\begin{cases}1-2^{-x},&x\ge 0\\-1+2^x,&x<0\end{cases}\)

\(f(x)<-\cfrac{1}{2}\)

等价转化为\(\begin{cases}x\ge0\\1-2^{-x}<-\cfrac{1}{2}\end{cases}\)

或者\(\begin{cases}x<0\\-1+2^x<-\cfrac{1}{2}\end{cases}\)

解得\(x<-1\),故选A;

法2:利用奇函数的对称性求解,由于奇函数的图像关于原点对称,

\(x>0\)时,\(f(x)=1-2^{-x}>0\),而\(f(x)<-\cfrac{1}{2}\)的解集和\(f(x)>\cfrac{1}{2}(x>0)\) 的解集关于原点对称,

故先求解不等式\(f(x)>\cfrac{1}{2}(x>0)\)

得到\(1-2^{-x}>\cfrac{1}{2}(x>0)\),解得\(x>1\)

故原不等式\(f(x)<-\cfrac{1}{2}\)的解集为\(x<-1\),故选A。

例9已知定义在\(R\)上的偶函数\(f(x)\),在\(x\ge 0\)时,\(f(x)=e^x+ln(x+1)\),若\(f(a)<f(a-1)\),则\(a\)的取值范围是 ( )
A.\((-\infty,1)\) \(\hspace{1cm}\) B. \((-\infty,\cfrac{1}{2})\) \(\hspace{1cm}\) C. \((\cfrac{1}{2},1)\) \(\hspace{1cm}\) D.\((1,+\infty)\)

分析.根据题中所给的函数解析式,可知函数\(y=e^x,y=ln(x+1)\)\([0,+\infty)\)上是增加的,

故函数\(f(x)=e^x+ln(x+1)\)\([0,+\infty)\)上是增加的,

根据偶函数图像的对称性,可知函数在\((-\infty,0]\)上是减少的,

所以\(f(a)<f(a-1)\)等价于\(|a|<|a-1|\)

两边同时平方去掉绝对值符号,

解得\(a<\cfrac{1}{2}\),故选B。

解后反思:①、本题目如果分类讨论去掉符号\(f\),就会变得很麻烦。②、遇到两个绝对值符号,通常平方处理。

例10【2017\(\cdot\)深圳模拟】若函数\(f(x)=\cfrac{x}{(2x+1)(x-a)}\)是奇函数,则实数\(a\)的值是【】.

A.\(\cfrac{1}{2}\) \(\hspace{2cm}\) B.\(\cfrac{2}{3}\) \(\hspace{2cm}\) C.\(\cfrac{3}{4}\) \(\hspace{2cm}\) D.\(-\cfrac{1}{2}\)

法1:由函数\(f(x)\)为奇函数,则满足\(f(-x)=-f(x)\)

\(f(x)=\cfrac{x}{(2x+1)(x-a)}=\cfrac{x}{2x^2+(1-2a)x-a}\)

\(f(-x)=\cfrac{-x}{(-2x+1)(-x-a)}=\cfrac{-x}{2x^2-(1-2a)x-a}\)

\(\cfrac{-x}{2x^2-(1-2a)x-a}=\cfrac{-x}{2x^2+(1-2a)x-a}\)应该恒成立,

只需要\(-(1-2a)=1-2a\),解得\(a=\cfrac{1}{2}\)

法2:由于定义域中有\(-1,1\),故必然满足\(f(-1)=-f(1)\),解得\(a=\cfrac{1}{2}\);和法1相比,是特值验证。

法3:由于奇函数的定义域关于原点对称,令\(2x+1=0\)得到\(x=-\cfrac{1}{2}\),故可知定义域中没有\(x=-\cfrac{1}{2}\)

\(x-a=0\)得到\(x=a\),故定义域中必然没有\(x=a\),故\(a=\cfrac{1}{2}\)

法4:\(f(x)=\cfrac{x}{(2x+1)(x-a)}=\cfrac{x}{2x^2+(1-2a)x-a}\),由于分子函数为奇函数,要是\(f(x)\)为奇函数,则分母函数\(y=2x^2+(1-2a)x-a\)为二次函数,

要是偶函数,则\(1-2a=0\),解得\(a=\cfrac{1}{2}\)

例11【奇偶+单调】已知函数\(f(x)\)是定义在R上的奇函数,且当\(x>0\)时,\(f(x)=-x^2+ax-1-a\),若函数为R上的单调减函数,求\(a\)的取值范围。

分析:由于函数\(f(x)\)定义在R上的奇函数,故\(f(0)=0\),注意此时并不意味函数必须是在\(x=0\)的两侧连续。

要使得函数在R上单调递减,首先必须是\(x>0\)时,\(f(x)\)单调递减,那么必须满足\(f(0)\leq 0\),这样在\([0,+\infty)\)上单调递减,

同时必须满足对称轴在\(y\)轴上或者其左侧,故\(-\cfrac{a}{-2}\leq 0\)的,故由\(\begin{cases}f(0)=-1-a\leq 0\\\cfrac{a}{2}\leq 0\end{cases}\)

解得\(a\in[-1,0]\)

例12【2019届高三理科函数的奇偶性周期性课时作业第7题】设函数\(f(x)(x\in R)\)满足\(f(x+\pi)=f(x)+sinx\),当\(0\leq x<\pi\)时,\(f(x)=0\),求\(f(\cfrac{23\pi}{6})\)的值。

分析:\(f(x+2\pi)=f[(x+\pi)+\pi]=f(x+\pi)+sin(x+\pi)\)

\(=[f(x)+sinx]-sinx=f(x)\),故\(T=2\pi\)

\(f(\cfrac{23\pi}{6})=f(\pi+\cfrac{5\pi}{6})\)

\(=f(\cfrac{5\pi}{6})+sin\cfrac{5\pi}{6}\)

\(=0+\cfrac{1}{2}=\cfrac{1}{2}\)

例13【2019届高三理科函数的奇偶性周期性课时作业第13题】

设定义在\(R\)上的函数\(f(x)\)同时满足一下条件:

\(f(x)+f(-x)=0\)

\(f(x)=f(x+2)\)

③当\(0\leq x<1\)时,\(f(x)=2^x-1\)

\(f(\cfrac{1}{2})+f(1)+f(\cfrac{3}{2})+f(2)+f(\cfrac{5}{2})\)的值是_________。

分析:由①知,函数为奇函数,在利用③先做出\([0,1)\)上的图像,

再利用奇函数,做出\((-1,0]\)上的图像,一个周期基本完成,就差端点值\(f(-1)\)\(f(1)\)的值未确定;

难点是求\(f(1)\)的值,可以通过以下几个思路求解,

法1:图像法,假设\(f(1)=\cfrac{1}{2}\),则\(f(-1)=-\cfrac{1}{2}\),奇偶性是说的通的,

但是周期性不满足,因为向右平移一个周期后,元素\(1\)对应\(\cfrac{1}{2}\),还对应\(-\cfrac{1}{2}\)

出现了一对多,不是函数了,故只能有\(f(1)=0\),即也有\(f(-1)=0\)

这样在一个周期上奇偶性和周期性都是满足的。

法2:题中没有明确告诉,但是由①②可知,

\(f(x+2)=-f(-x)\),即\(f(x+2)+f(-x)=0\),即对称中心是\((1,0)\)

这时要么函数在\((1,0)\)处没有定义,这个不满足题意;

要么必有\(f(1)=0\),则\(f(-1)=0\);其余就好处理了。

法3:赋值法,由\(f(x)+f(-x)=0\),令\(x=1\),得到\(f(1)+f(-1)=0\)①,

\(x=-1\),由\(f(x)=f(x+2)\)得到,\(f(-1)=f(1)\)②,故有\(f(1)=f(-1)=0\)

在此基础上,做出函数的大致图像,可知\(f(1)=f(2)=f(0)=0\)

\(f(\cfrac{3}{2})+f(\cfrac{5}{2})=0\)\(f(\cfrac{1}{2})=\sqrt{2}-1\)

\(f(\cfrac{1}{2})+f(1)+f(\cfrac{3}{2})+f(2)+f(\cfrac{5}{2})=\sqrt{2}-1\)

转载于:https://www.cnblogs.com/wanghai0666/p/7631819.html

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值