题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2323
题意: 题意过于复杂,我直接简化下。给出一个长度为n的数字串,只包含1到9,将数字串分成不同的子串(显然 这样的分法有2^(n-1)种),将所有子串看做10进制的数字加起来得到该种分法下的和Si,求:
思路:
#include <iostream>
#include <cstdio>
#include <string.h>
#include <algorithm>
#include <cmath>
#include <vector>
#include <queue>
#include <set>
#include <stack>
#include <string>
#include <map>
#define max(x,y) ((x)>(y)?(x):(y))
#define min(x,y) ((x)<(y)?(x):(y))
#define abs(x) ((x)>=0?(x):-(x))
#define i64 long long
#define u32 unsigned int
#define u64 unsigned long long
#define clr(x,y) memset(x,y,sizeof(x))
#define CLR(x) x.clear()
#define ph(x) push(x)
#define pb(x) push_back(x)
#define Len(x) x.length()
#define SZ(x) x.size()
#define PI acos(-1.0)
#define sqr(x) ((x)*(x))
#define MP(x,y) make_pair(x,y)
#define EPS 1e-10
#define FOR0(i,x) for(i=0;i<x;i++)
#define FOR1(i,x) for(i=1;i<=x;i++)
#define FOR(i,a,b) for(i=a;i<=b;i++)
#define FORL0(i,a) for(i=a;i>=0;i--)
#define FORL1(i,a) for(i=a;i>=1;i--)
#define FORL(i,a,b)for(i=a;i>=b;i--)
#define rush() int CC;for(scanf("%d",&CC);CC--;)
#define Rush(n) while(scanf("%d",&n)!=-1)
using namespace std;
void RD(int &x){scanf("%d",&x);}
void RD(i64 &x){scanf("%lld",&x);}
void RD(u64 &x){scanf("%I64u",&x);}
void RD(u32 &x){scanf("%u",&x);}
void RD(double &x){scanf("%lf",&x);}
void RD(int &x,int &y){scanf("%d%d",&x,&y);}
void RD(i64 &x,i64 &y){scanf("%lld%lld",&x,&y);}
void RD(u32 &x,u32 &y){scanf("%u%u",&x,&y);}
void RD(double &x,double &y){scanf("%lf%lf",&x,&y);}
void RD(int &x,int &y,int &z){scanf("%d%d%d",&x,&y,&z);}
void RD(i64 &x,i64 &y,i64 &z){scanf("%lld%lld%lld",&x,&y,&z);}
void RD(u32 &x,u32 &y,u32 &z){scanf("%u%u%u",&x,&y,&z);}
void RD(double &x,double &y,double &z){scanf("%lf%lf%lf",&x,&y,&z);}
void RD(char &x){x=getchar();}
void RD(char *s){scanf("%s",s);}
void RD(string &s){cin>>s;}
void PR(int x) {printf("%d\n",x);}
void PR(int x,int y) {printf("%d %d\n",x,y);}
void PR(i64 x) {printf("%lld\n",x);}
void PR(u32 x) {printf("%u\n",x);}
void PR(u64 x) {printf("%llu\n",x);}
void PR(double x) {printf("%.2lf\n",x);}
void PR(char x) {printf("%c\n",x);}
void PR(char *x) {printf("%s\n",x);}
void PR(string x) {cout<<x<<endl;}
const int mod=1000000007;
const i64 inf=((i64)1)<<60;
const double dinf=1000000000000000000.0;
const int INF=1000000005;
const int N=1005;
struct Matrix
{
i64 a[2][2];
void init(int x)
{
a[0][0]=a[0][1]=a[1][0]=a[1][1]=0;
if(x) a[0][0]=a[1][1]=1;
}
Matrix operator+(Matrix p)
{
Matrix ans;
int i,j;
FOR0(i,2) FOR0(j,2) ans.a[i][j]=(a[i][j]+p.a[i][j])%mod;
return ans;
}
Matrix operator*(Matrix p)
{
Matrix ans;
ans.init(0);
int i,j,k;
FOR0(k,2) FOR0(i,2) FOR0(j,2)
{
ans.a[i][j]+=a[i][k]*p.a[k][j]%mod;
ans.a[i][j]%=mod;
}
return ans;
}
Matrix Pow(i64 n)
{
Matrix ans,p=*this;
ans.init(1);
while(n>0)
{
if(n&1) ans=ans*p;
p=p*p;
n>>=1;
}
return ans;
}
};
Matrix p[N],a,f[N],g[N];
void init()
{
a.a[0][0]=0;
a.a[0][1]=1;
a.a[1][0]=1;
a.a[1][1]=1;
p[0]=a;
int i;
for(i=1;i<N;i++)
{
p[i]=p[i-1].Pow(10);
}
}
int n;
char s[N];
int main()
{
init();
RD(n); RD(s+1);
f[0].init(1);
g[0].init(1);
int i,j,k;
FOR1(i,n) s[i]-='0';
Matrix x1,x2;
if(n==1)
{
if(s[1]>1) PR(a.Pow(s[1]-2).a[1][1]);
else puts("0");
return 0;
}
f[2]=a.Pow(s[1]+s[2]-2)+a.Pow(s[1]*10+s[2]-2);
g[1]=a.Pow(s[1]);
g[2]=a.Pow(s[1]+s[2])+a.Pow(s[1]*10+s[2]);
for(i=3;i<=n;i++)
{
x1=a.Pow(s[i]);
x2=a.Pow(s[i]);
k=0;
f[i].init(0);
g[i].init(0);
for(j=i-1;j>=0;j--)
{
if(j==i-1) f[i]=f[i]+f[i-1]*x1;
else f[i]=f[i]+g[j]*x1;
g[i]=g[i]+g[j]*x2;
k++;
if(k==1) x1=x1*(p[k].Pow(s[j]-1)*a.Pow(8));
else x1=x1*p[k].Pow(s[j]);
x2=x2*p[k].Pow(s[j]);
}
}
PR(f[n].a[1][1]);
}