PyTorch快速入门教程四(cnn:卷积神经网络 )

以前的教程中我们已经完成了基础部分,接下来进入深度学习部分,第一个要讲的是cnn,也就是卷积神经网络: cnn,也就是卷积神经网络

数据集仍然是使用MNIST手写字体,和之前一样做同样的预处理。

model
# 定义 Convolution Network 模型
class Cnn(nn.Module):
    def __init__(self, in_dim, n_class):
        super(Cnn, self).__init__()
        self.conv = nn.Sequential(
            nn.Conv2d(in_dim, 6, 3, stride=1, padding=1),
            nn.ReLU(True),
            nn.MaxPool2d(2, 2),
            nn.Conv2d(6, 16, 5, stride=1, padding=0),
            nn.ReLU(True),
            nn.MaxPool2d(2, 2),
        )

        self.fc = nn.Sequential(
            nn.Linear(400, 120),
            nn.Linear(120, 84),
            nn.Linear(84, n_class)
        )

    def forward(self, x):
        out = self.conv(x)
        out = out.view(out.size(0), -1)
        out = self.fc(out)
        return out

model = Cnn(1, 10)  # 图片大小是28x28
use_gpu = torch.cuda.is_available()  # 判断是否有GPU加速
if use_gpu:
    model = model.cuda()
# 定义loss和optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=learning_rate)

以上就是网络的模型的部分了。和之前比主要增加了这些不一样的部分

  1. 1、nn.Sequential()

这个表示将一个有序的模块写在一起,也就相当于将神经网络的层按顺序放在一起,这样可以方便结构显示

  1. 2、nn.Conv2d()

这个是卷积层,里面常用的参数有四个,in_channelsout_channelskernel_sizestridepadding

in_channels表示的是输入卷积层的图片厚度
out_channels表示的是要输出的厚度
kernel_size表示的是卷积核的大小,可以用一个数字表示长宽相等的卷积核,比如kernel_size=3,也可以用不同的数字表示长宽不同的卷积核,比如kernel_size=(3, 2) stride表示卷积核滑动的步长

padding表示的是在图片周围填充0的多少,padding=0表示不填充,padding=1四周都填充1维

  1. 3、nn.ReLU()
    这个表示使用ReLU激活函数,里面有一个参数inplace,默认设置为False,表示新创建一个对象对其修改,也可以设置为True,表示直接对这个对象进行修改
  2. 4、nn.MaxPool2d() 这个是最大池化层,当然也有平均池化层,里面的参数有kernel_sizestridepadding

kernel_size表示池化的窗口大小,和卷积层里面的 kernel_size是一样的

stride也和卷积层里面一样,需要自己设置滑动步长

padding也和卷积层里面的参数是一样的,默认是0

模型需要传入的参数是输入的图片维数以及输出的种类数

train

训练的过程是一样的,只是输入图片不再需要展开

这是训练20个epoch的结果,当然你也可以增加训练次数,修改里面的参数达到更好的效果,可以参考一下Lenet的网络结构,自己重新写一写

pytorch-train

大体上简单的卷积网络就是这么构建的,当然现在也有很多复杂的网络,比如vgg,inceptionv1-v4,resnet以及修正的inception-resnet,这些网络都是深层的卷积网络,有兴趣的同学可以去看看pytorch的官方代码实现,或者去github上搜索相应的网络。

转载于:https://my.oschina.net/earnp/blog/1113891

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值