参数估计包含两种常用方式: 点估计和区间估计.
Matlab统计工具箱给出了常用概率分布中参数的点估计 (采用最大似然估计法) 与区间估计,
另外还提供了部分分布的对数似然函数的计算功能.
由于点估计中的矩估计法的实质是求与未知参数相应的样本的各阶矩, 统计工具箱提供了常用的求矩函数(见第一章),
读者可根据需要选择合适的矩函数进行点估计.
表2.1 统计工具箱中的参数估计函数 (fit / like)
函数名称
函数说明
调用格式
unifit
均匀分布数据的参数点估计和区间估计
[ahat,bhat,ACI,BCI] = unifit(X,alpha)
expfit
指数分布数据的参数点估计和区间估计
[muhat,muci] = expfit(x,alpha)
normfit
正态分布数据的参数点估计和区间估计
[muhat,sigmahat,muci,sigmaci]
= normfit(X,alpha)
binofit
二项分布数据的参数点估计和区间估计
[phat,pci] = binofit(x,n,alpha)
poissfit
泊松分布数据的参数点估计和区间估计
[lambdahat,lambdaci]
= poissfit(X,alpha)
说明: 调用格式只罗列了其中的一种. 需另外说明的是:
(1) unifit和normfit的格式与其它函数均不同, 此二者要求左边的输出变量必须将参数 或 分别列出.
(2) binofit (x,n,alpha)根据试验成功的次数x和总的试验次数n, 对 中的p进行最大似然估计,
同时返回置信度为100(1-alpha)%的置信区间pci.
【例2-1】(书P692.3) 使用一测量仪器对同一值进行了12次独立测量, 其结果为 (单位:
mm)
232.50, 232.48, 232.15, 232.52, 232.53, 232.30, 232.48, 232.05, 232.45, 232.60, 232.47, 232.30
试用矩法估计测量的真值和方差 (设仪器无系统误差).
·编写命令文件exercise2_3.m:
%P66_2.3 mu与sigma^2的矩估计
x=[232.50, 232.48, 232.15, 232.52, 232.53, 232.30,...
232.48, 232.05, 232.45, 232.60, 232.47, 232.30];
mu_ju=mean(x)
sigma2_ju=var(x,1)
·运行命令文件exercise2_3.m:
>> exercise2_3
mu_ju = 232.4025
sigma2_ju
= 0.0255
【例2-2】(书P692.22) 随机地从一批零件中抽取16个, 测得长度 (单位: cm) 为:
2.14, 2.10, 2.13, 2.15, 2.13, 2.12, 2.13, 2.10,
2.15, 2.12, 2.14, 2.10, 2.13, 2.11, 2.14, 2.11
设零件长度的分布为正态的, 试求总体均值的90%的置信区间:
(1)若
(cm); (2) 若 未知.
(1)·编写函数文件zestimate.m:
%P69_2.22(1)sigma已知时mu的区间估计
function muci=zestimate(x,sigma,alpha)
n=length(x);
xhat=mean(x);
u_alpha=norminv(1-alpha/2,0,1);
delta1=sigma/sqrt(n)*u_alpha;
muci=[xhat-delta1,xhat+delta1];
·调用函数文件zestimate.m:
>> x=[2.14, 2.10, 2.13, 2.15,
2.13, 2.12, 2.13, 2.10, 2.15, 2.12, 2.14, 2.10, 2.13, 2.11, 2.14,
2.11];
>> sigma=0.01;
>> alpha=0.1;
>>
muci=zestimate(x,sigma,alpha)
muci = 2.1209 2.1291
(2)·编写命令文件exercise2_22_2.m:
%P69_2.22(1)sigma未知时mu的区间估计
x=[2.14, 2.10, 2.13, 2.15, 2.13, 2.12, 2.13, 2.10, 2.15, 2.12,
2.14, 2.10, 2.13, 2.11, 2.14, 2.11];
alpha=0.1;
[muhat,sigmahat,muci,sigmaci]= normfit(x,alpha);
muci
·运行命令文件exercise2_22_2.m:
>> exercise2_22_2
muci = 2.1175 2.1325
【例2-3】(书P66例2.31) 对一批产品, 欲通过抽样检查其合格率. 若产品不合格率在5%以下,
则该批产品可出厂. 检验时要求结果具有0.95的置信水平. 今抽取产品100件, 发现不合格品有4件, 问这批产品能否出厂?
>>
[phat,pci]=binofit(4,100,0.05)
phat = 0.0400
pci = 0.0110 0.0993
由于置信区间的上限超出了规定指标(不合格率在5%以下), 因此不能出厂.