matlab怎么做参数估计,[转载]参数估计(matlab)

参数估计包含两种常用方式: 点估计和区间估计.

Matlab统计工具箱给出了常用概率分布中参数的点估计 (采用最大似然估计法) 与区间估计,

另外还提供了部分分布的对数似然函数的计算功能.

由于点估计中的矩估计法的实质是求与未知参数相应的样本的各阶矩, 统计工具箱提供了常用的求矩函数(见第一章),

读者可根据需要选择合适的矩函数进行点估计.

表2.1 统计工具箱中的参数估计函数 (fit / like)

函数名称

函数说明

调用格式

unifit

均匀分布数据的参数点估计和区间估计

[ahat,bhat,ACI,BCI] = unifit(X,alpha)

expfit

指数分布数据的参数点估计和区间估计

[muhat,muci] = expfit(x,alpha)

normfit

正态分布数据的参数点估计和区间估计

[muhat,sigmahat,muci,sigmaci]

= normfit(X,alpha)

binofit

二项分布数据的参数点估计和区间估计

[phat,pci] = binofit(x,n,alpha)

poissfit

泊松分布数据的参数点估计和区间估计

[lambdahat,lambdaci]

= poissfit(X,alpha)

说明: 调用格式只罗列了其中的一种. 需另外说明的是:

(1) unifit和normfit的格式与其它函数均不同, 此二者要求左边的输出变量必须将参数 或 分别列出.

(2) binofit (x,n,alpha)根据试验成功的次数x和总的试验次数n, 对 中的p进行最大似然估计,

同时返回置信度为100(1-alpha)%的置信区间pci.

【例2-1】(书P692.3) 使用一测量仪器对同一值进行了12次独立测量, 其结果为 (单位:

mm)

232.50, 232.48, 232.15, 232.52, 232.53, 232.30, 232.48, 232.05, 232.45, 232.60, 232.47, 232.30

试用矩法估计测量的真值和方差 (设仪器无系统误差).

·编写命令文件exercise2_3.m:

%P66_2.3 mu与sigma^2的矩估计

x=[232.50, 232.48, 232.15, 232.52, 232.53, 232.30,...

232.48, 232.05, 232.45, 232.60, 232.47, 232.30];

mu_ju=mean(x)

sigma2_ju=var(x,1)

·运行命令文件exercise2_3.m:

>> exercise2_3

mu_ju = 232.4025

sigma2_ju

= 0.0255

【例2-2】(书P692.22) 随机地从一批零件中抽取16个, 测得长度 (单位: cm) 为:

2.14, 2.10, 2.13, 2.15, 2.13, 2.12, 2.13, 2.10,

2.15, 2.12, 2.14, 2.10, 2.13, 2.11, 2.14, 2.11

设零件长度的分布为正态的, 试求总体均值的90%的置信区间:

(1)若

(cm); (2) 若 未知.

(1)·编写函数文件zestimate.m:

%P69_2.22(1)sigma已知时mu的区间估计

function muci=zestimate(x,sigma,alpha)

n=length(x);

xhat=mean(x);

u_alpha=norminv(1-alpha/2,0,1);

delta1=sigma/sqrt(n)*u_alpha;

muci=[xhat-delta1,xhat+delta1];

·调用函数文件zestimate.m:

>> x=[2.14, 2.10, 2.13, 2.15,

2.13, 2.12, 2.13, 2.10, 2.15, 2.12, 2.14, 2.10, 2.13, 2.11, 2.14,

2.11];

>> sigma=0.01;

>> alpha=0.1;

>>

muci=zestimate(x,sigma,alpha)

muci = 2.1209 2.1291

(2)·编写命令文件exercise2_22_2.m:

%P69_2.22(1)sigma未知时mu的区间估计

x=[2.14, 2.10, 2.13, 2.15, 2.13, 2.12, 2.13, 2.10, 2.15, 2.12,

2.14, 2.10, 2.13, 2.11, 2.14, 2.11];

alpha=0.1;

[muhat,sigmahat,muci,sigmaci]= normfit(x,alpha);

muci

·运行命令文件exercise2_22_2.m:

>> exercise2_22_2

muci = 2.1175 2.1325

【例2-3】(书P66例2.31) 对一批产品, 欲通过抽样检查其合格率. 若产品不合格率在5%以下,

则该批产品可出厂. 检验时要求结果具有0.95的置信水平. 今抽取产品100件, 发现不合格品有4件, 问这批产品能否出厂?

>>

[phat,pci]=binofit(4,100,0.05)

phat = 0.0400

pci = 0.0110 0.0993

由于置信区间的上限超出了规定指标(不合格率在5%以下), 因此不能出厂.

参与评论 您还未登录,请先 登录 后发表或查看评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:深蓝海洋 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值