Given a set of intervals, for each of the interval i, check if there exists an interval j whose start point is bigger than or equal to the end point of the interval i, which can be called that j is on the "right" of i.
For any interval i, you need to store the minimum interval j's index, which means that the interval j has the minimum start point to build the "right" relationship for interval i. If the interval j doesn't exist, store -1 for the interval i. Finally, you need output the stored value of each interval as an array.
Note:
- You may assume the interval's end point is always bigger than its start point.
- You may assume none of these intervals have the same start point.
Example 1:
Input: [ [1,2] ] Output: [-1] Explanation: There is only one interval in the collection, so it outputs -1.
Example 2:
Input: [ [3,4], [2,3], [1,2] ] Output: [-1, 0, 1] Explanation: There is no satisfied "right" interval for [3,4]. For [2,3], the interval [3,4] has minimum-"right" start point; For [1,2], the interval [2,3] has minimum-"right" start point.
Example 3:
Input: [ [1,4], [2,3], [3,4] ] Output: [-1, 2, -1] Explanation: There is no satisfied "right" interval for [1,4] and [3,4]. For [2,3], the interval [3,4] has minimum-"right" start point.
这道题给了我们一堆区间,让我们找每个区间的最近右区间,要保证右区间的start要大于等于当前区间的end,由于区间的顺序不能变,所以我们不能给区间排序,我们需要建立区间的start和该区间位置之间的映射,由于题目中限定了每个区间的start都不同,所以不用担心一对多的情况出现。然后我们把所有的区间的start都放到一个数组中,并对这个数组进行降序排序,那么start值大的就在数组前面。然后我们遍历区间集合,对于每个区间,我们在数组中找第一个小于当前区间的end值的位置,如果数组中第一个数就小于当前区间的end,那么说明该区间不存在右区间,结果res中加入-1;如果找到了第一个小于当前区间end的位置,那么往前推一个就是第一个大于等于当前区间end的start,我们在哈希表中找到该区间的坐标加入结果res中即可,参见代码如下:
解法一:
class Solution { public: vector<int> findRightInterval(vector<Interval>& intervals) { vector<int> res, v; unordered_map<int, int> m; for (int i = 0; i < intervals.size(); ++i) { m[intervals[i].start] = i; v.push_back(intervals[i].start); } sort(v.begin(), v.end(), greater<int>()); for (auto a : intervals) { int i = 0; for (; i < v.size(); ++i) { if (v[i] < a.end) break; } res.push_back((i > 0) ? m[v[i - 1]] : -1); } return res; } };
上面的解法可以进一步化简,我们可以利用STL的lower_bound函数来找第一个不小于目标值的位置,这样也可以达到我们的目标,参见代码如下:
解法二:
class Solution { public: vector<int> findRightInterval(vector<Interval>& intervals) { vector<int> res; map<int, int> m; for (int i = 0; i < intervals.size(); ++i) { m[intervals[i].start] = i; } for (auto a : intervals) { auto it = m.lower_bound(a.end); if (it == m.end()) res.push_back(-1); else res.push_back(it->second); } return res; } };
本文转自博客园Grandyang的博客,原文链接:找右区间[LeetCode] Find Right Interval ,如需转载请自行联系原博主。