#清理之前的库存
Paper link:
ICCV 2017 Open Access Repositoryopenaccess.thecvf.comCode link:(keras 实现)
https://github.com/fizyr/keras-retinanetgithub.compytorch 实现版本:
https://github.com/yhenon/pytorch-retinanetgithub.com参考:
[项目实战]训练retinanet(pytorch版) - wuzeyuan - 博客园www.cnblogs.comRetinaNet的Backbone是由ResNet+FPN构成。输入图像经过Backbone的特征提取后,可以得到
特征图金字塔,其中下标
表示特征金字塔的层数(
特征图的分辨率比输入图像小
)
在得到特征金字塔后,对每层特征金字塔分别使用两个子网络(分类网络+检测框位置回归)。这两个子网络由RPN网络修改得到。
- 与RPN网络类似,也使用anchors来产生proposals。特征金字塔的每层对应一个anchor面积,为了产生更加密集的coverage,增加了三个面积比例
(即使用当前anchor对应的面积分别乘以相应的比例,形成三个尺度),然后anchors的长宽比仍为,因此特征金字塔的每一层对应A = 9种Anchors。
- 原始RPN网络的分类网络只是区分前景与背景两类,此处将其改为目标类别的个数K
参考:
江小鱼:目标检测算法 - RetinaNetzhuanlan.zhihu.com其他版本的也可以参考:
Papers With Code : Search for RetinaNetpaperswithcode.compytorch 实现
CSDN-专业IT技术社区-登录blog.csdn.net参考:
路一直都在:再谈RetinaNetzhuanlan.zhihu.com残差网络:
参考:
CVPR 2018 | 残差密集网络:利用所有分层特征的图像超分辨率网络www.cvmart.net