keras retinanet使用_聊聊RetinaNet

#清理之前的库存

Paper link:

ICCV 2017 Open Access Repository​openaccess.thecvf.com

Code link:(keras 实现)

https://github.com/fizyr/keras-retinanet​github.com

pytorch 实现版本:

https://github.com/yhenon/pytorch-retinanet​github.com

参考:

[项目实战]训练retinanet(pytorch版) - wuzeyuan - 博客园​www.cnblogs.com
bd79bc7da65e34d85bc9e04fd90f2758.png

RetinaNet的Backbone是由ResNet+FPN构成。输入图像经过Backbone的特征提取后,可以得到

equation?tex=P_%7B3%7D%5Csim+P_%7B7%7D特征图金字塔,其中下标
equation?tex=l表示特征金字塔的层数(
equation?tex=P_%7Bl%7D特征图的分辨率比输入图像小
equation?tex=2%5El

在得到特征金字塔后,对每层特征金字塔分别使用两个子网络(分类网络+检测框位置回归)。这两个子网络由RPN网络修改得到。

  • 与RPN网络类似,也使用anchors来产生proposals。特征金字塔的每层对应一个anchor面积,为了产生更加密集的coverage,增加了三个面积比例
    equation?tex=%5Cleft%5C%7B+2%5E0%2C+2%5E%5Cfrac%7B1%7D%7B2%7D%2C2%5E%5Cfrac%7B2%7D%7B3%7D+%5Cright%5C%7D (即使用当前anchor对应的面积分别乘以相应的比例,形成三个尺度),然后anchors的长宽比仍为
    equation?tex=%5Cleft%5C%7B+1%3A2%2C+1%3A1%2C+2%3A1+%5Cright%5C%7D ,因此特征金字塔的每一层对应A = 9种Anchors。
  • 原始RPN网络的分类网络只是区分前景与背景两类,此处将其改为目标类别的个数K

参考:

江小鱼:目标检测算法 - RetinaNet​zhuanlan.zhihu.com
5427d7ef8c80ffbcb868ece357f15d3a.png

其他版本的也可以参考:

Papers With Code : Search for RetinaNet​paperswithcode.com
7b71344ae1704dbf7b780668ab46e64d.png

pytorch 实现

CSDN-专业IT技术社区-登录​blog.csdn.net

参考:

路一直都在:再谈RetinaNet​zhuanlan.zhihu.com
fb7c32eedc5dfcd59273d2561b05ad1a.png

残差网络:

参考:

CVPR 2018 | 残差密集网络:利用所有分层特征的图像超分辨率网络​www.cvmart.net
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值