matlab dsp工具箱_GPU中的并行运算,加速你的Matlab程序

本文介绍了如何使用CUDA工具箱在Matlab中调用Nvidia GPU进行并行运算,提升程序性能。CUDA编程模型将GPU作为协处理器,通过Kernel函数执行并行计算任务。Matlab中的gpuArray()和gather()函数可实现数据在GPU上的运算和取回。对于复杂情况,可以通过调用.cu文件实现GPU加速。文章还提及了Matlab的并行计算工具箱和相关资源参数。
摘要由CSDN通过智能技术生成

Matlab本就擅长矩阵计算,其借助CUDA工具箱调用Nvidia GPU加速并行运算,可以起到如虎添翼的效果。今天给大家介绍一下CUDA的基础知识以及如何快速在Matlab中调用工具箱对程序进行加速。

CUDA,Compute Unified Device Architecture 统一计算设备架构

CUDA编程模型是将CPU作为主机,GPU作为协处理器或者叫设备,一般情况下,CPU负责进行逻辑性强的事务处理和串行计算,GPU则专注于执行高度线程化的并行处理任务。各自拥有相互独立的存储地址空间,也就是主机端的内存和设备端的显存。

50c67e9ae8bc4bcad3f9b56670275b72.png

操作显存需要调用CUDA API中的存储器管理函数,操作包括开辟、释放、初始化显存空间等,在主机端和设备端之间进行数据传输等。运行在GPU上的CUDA并行计算函数称为Kernel(内核函数),一个kernel函数并不是一个完整的程序,而是整个程序中的一个可以被并行执行的步骤,一个完整的CUDA程序是有一系列的设备端Kernel函数并行步骤和主机端的串行处理步骤共同完成。

aa897a20e7e4dda5ed380ed8bed4cb3b.png

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值