训练神经网络gpu占用率低,gpu为什么适合神经网络

为什么Matlab训练神经网络用不了GPU

可以用gpu加速训练,可以通过增加'useGPU'字段:train(net,P,T,'useGPU','yes');或先将数据集P,T通过函数Pgpu=gpuArray(P);Tgpu=gpuArray(T);转移到gpu内存中,再调用训练函数train(net,Pgpu,Tgpu)但是需要注意以下几点:1,由于要在gpu上训练,网络的权重调整也会在gpu内进行,所以会占用gpu的内存,内存占用率与数据集的大小相关,可以通过下面的代码了解内存占用:gpudev=gpuDevice;%事先声明gpudev变量为gpu设备类%其他代码gpudev.AvailableMemory%实时获得当前gpu的可用内存可以通过尝试不同的数据集大小选择一个合适的数据集大小2,大部分gpu处理double类型的数据能力并不强,所以如果想要取得较好的训练效果,需要使用single数据类型的数据集,例:P=single(P);%将double型的P转为single型T=single(T);%将double型的T转为single型train(net,P,T,'useGPU','yes');但是matlab的神经网络工具箱的一个函数可能有bug,在gpu上运行double变量的数据集时没有问题,但运行single变量时可能会弹出如下错误:ErrorusinggpuArray/arrayfunVariablexxchangedtype.修复该问题需要在源文件上作一些修改,具体内容这里没法三言两语说清楚,如果遇到该问题可以留言经过本人测试,single型的数据集在gpu上可以取得数十倍的加速,具体加速情况与具体gpu型号有关。

谷歌人工智能写作项目:小发猫

为什么要用GPU来训练神经网络而不是CPU?

许多现代神经网络的实现基于GPU,GPU最初是为图形应用而开发的专用硬件组件常见的神经网络结构。所以神经网络收益于游戏产业的发展。

中央处理器(centralprocessingunit,简称CPU)作为计算机系统的运算和控制核心,是信息处理、程序运行的最终执行单元。

CPU自产生以来,在逻辑结构、运行效率以及功能外延上取得了巨大发展。CPU出现于大规模集成电路时代,处理器架构设计的迭代更新以及集成电路工艺的不断提升促使其不断发展完善。

从最初专用于数学计算到广泛应用于通用计算。从4位到8位、16位、32位处理器,最后到64位处理器,从各厂商互不兼容到不同指令集架构规范的出现,CPU自诞生以来一直在飞速发展。

冯诺依曼体系结构是现代计算机的基础。在该体系结构下,程序和数据统一存储,指令和数据需要从同一存储空间存取,经由同一总线传输,无法重叠执行。

根据冯诺依曼体系,CPU的工作分为以下5个阶段:取指令阶段、指令译码阶段、执行指令阶段、访存取数和结果写回。

如何让MATALAB的程序在GPU上运行

第一步:在matlab命令窗口,运行gpuDevice,查看自己的显卡是否具备GPU加速功能第二步:CPU和GPU之间的数据交换,大致有如下几个函数和功能:(1)、将数据从CPU中搬入GPU,函数:gpuArray,用法M&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值