数学分析原理 定理 6.4

如果$P*$是$P$的加细,那么
$$L(P,f,\alpha)\leq L(P^*,f,\alpha)$$

$$U(P^*,f,\alpha)\leq U(P,f,\alpha)$$

 


证明:这两个命题对于Riemann积分来说是显然成立的,之所以对于Riemann-Stieltjes积分也成立,是因为$\alpha$是$[a,b]$上的增函数的缘故.比方说,$m_3\geq m_2\geq m_1$时,我们有
$$(\max\{x_1,x_2\})(m_3-m_1)\geq x_1(m_2-m_1)+x_2(m_3-m_2)$$
而$m_3,m_2,m_1$在经过$\alpha$的作用之后,顺序关系是不变的.所以
$$(\max\{x_1,x_2\})(\alpha(m_3)-\alpha(m_1))\geq x_1(\alpha(m_2)-\alpha(m_1))+x_2(\alpha(m_3)-\alpha(m_2))$$

下面的那条式子同理.

转载于:https://www.cnblogs.com/yeluqing/archive/2013/02/10/3827475.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值