漫步数学分析五——闭集

3 对于 Rn 中的集合 B ,如果它在Rn中的补(即集合 RnB )是开集,那么它是闭集。

例如,单点是闭集,含有边界的单位圆组成的集合是闭集。大致来说,当集合包含它的边界点时它就是闭的(直观感觉可从图6中看出),如图1所示。


这里写图片描述
图1

存在既不是开集又不是闭集的集合。例如在 R1 ,中半开半闭区间 (0,1] 既不是开集也不是闭集,因此如果 A 不是开集,我们不能说它是闭集,接下来的定理与定理2类似。

3
(i) Rn 中有限个闭子集的并是闭集。
(ii) Rn 中任意个闭子集的交是闭集。

这个定理是直接从定理2得出的,只需要注意当取补的时候,并与交需要互相变换,所以这里就不在证明。

1 S={(x,y)R2|0<x1,0y1} S 是闭集吗?


这里写图片描述
图2

观察图2,直观上看 S 不是闭集,因为y 轴上的边界部分不在 S 中,另外它的补也不是开集,因为y 轴上点的 ε 邻域与 S 相交(因此不在RnS)。

2 S={(x,y)R2|x2+y21} S 是闭集吗?

答案是肯定的。 S 就是包含边界的单位圆,它的补明显是开集,因为对于(x,y)R2S,半径为 ε=x2+y21 完全含于 R2S 中(如图3所示)。


这里写图片描述
图3

3 说明 Rn 中任何有限集是闭集。

单点是闭集,所以我们可以应用定理3 (i)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值