nyist 58 最小步数 BFS

最少步数
时间限制:3000 ms  |  内存限制:65535 KB 
难度:4
描述 
这有一个迷宫,有0~8行和0~8列:

 1,1,1,1,1,1,1,1,1
 1,0,0,1,0,0,1,0,1
 1,0,0,1,1,0,0,0,1
 1,0,1,0,1,1,0,1,1
 1,0,0,0,0,1,0,0,1
 1,1,0,1,0,1,0,0,1
 1,1,0,1,0,1,0,0,1
 1,1,0,1,0,0,0,0,1
 1,1,1,1,1,1,1,1,1

0表示道路,1表示墙。

现在输入一个道路的坐标作为起点,再如输入一个道路的坐标作为终点,问最少走几步才能从起点到达终点?

(注:一步是指从一坐标点走到其上下左右相邻坐标点,如:从(3,1)到(4,1)。)

输入
第一行输入一个整数n(0<n<=100),表示有n组测试数据;
随后n行,每行有四个整数a,b,c,d(0<=a,b,c,d<=8)分别表示起点的行、列,终点的行、列。
输出
输出最少走几步。
样例输入
2
3 1  5 7
3 1  6 7样例输出
12
11

  

///Memory Limit Exceeded


#include <iostream> 
#include <queue> 
using namespace std; 
struct node {   int x, y,step;  }; 
struct node s,e; 
int dd[4][2]={-1,0,1,0,0,-1,0,1},n,ans; 
int g[9][9]={ 
 
1,1,1,1,1,1,1,1,1,  
1,0,0,1,0,0,1,0,1, 
1,0,0,1,1,0,0,0,1, 
1,0,1,0,1,1,0,1,1, 
1,0,0,0,0,1,0,0,1,  
1,1,0,1,0,1,0,0,1, 
1,1,0,1,0,1,0,0,1,  
1,1,0,1,0,0,0,0,1,  
1,1,1,1,1,1,1,1,1 
}; 
queue <node> q; 

 
void bfs() 
{   node t,t2; 
    
while (! q.empty() )  q.pop(); 
   
q.push(s); 
    
while ( !q.empty()) 
    
{   t=q.front(); 
        
q.pop(); 
        
if (t.x==e.x && t.y==e.y) {  ans=t.step; return ;   }         
for (int i=0; i<4; i++)         
{   t2.x=t.x+dd[i][0]; t2.y=t.y+dd[i][1]; t2.step=t.step+1; 
            
if ( g[t2.x][t2.y]==0 ) q.push(t2);         
}    
} 
} 
 
 
int main(int argc, char *argv[]) 
{ 
    
cin>>n;     
while (n--)     
{   cin>>s.x>>s.y>>e.x>>e.y; s.step=0;         
ans=0;          
bfs();        
cout<<ans<<endl;     
}    
return 0; 
}

*******************************************************************************************************

//ACCept


#include <iostream>
#include <queue>
#define N 9
#define M 9
using namespace std;

int map[N][M]=
{
    1,1,1,1,1,1,1,1,1,
    1,0,0,1,0,0,1,0,1,
    1,0,0,1,1,0,0,0,1,
    1,0,1,0,1,1,0,1,1,
    1,0,0,0,0,1,0,0,1,
    1,1,0,1,0,1,0,0,1,
    1,1,0,1,0,1,0,0,1,
    1,1,0,1,0,0,0,0,1,
    1,1,1,1,1,1,1,1,1,
};
int d[4][2]={-1,0,0,1,1,0,0,-1 };

struct point
{
    int x,y,step;
}s,e;

queue <point> my;

int BFS(point s)
{
    int i,x,y;
    point t,temp;
    while (!my.empty()) my.pop();
    my.push(s);
    while (!my.empty())
    {
        t=my.front();
        my.pop();
        for (i=0; i<4; i++)
        {
            x=t.x+d[i][0];
            y=t.y+d[i][1];
            if (x==e.x&& y==e.y) return t.step+1;
            if (x>=0 && x<N && y>=0 && y<M && map[x][y]==0)
            {
                temp.x=x;
                temp.y=y;
                temp.step=t.step+1;
                my.push(temp);
            }
        }
    }
}

int main()
{
    int n,x0,y0,ans;
    cin>>n;
    while (n--)
    {
        cin>>s.x>>s.y>>e.x>>e.y;
        s.step=0;
        if (s.x==e.x && s.y==e.y) ans=0;
        else ans=BFS(s);
        cout<<ans<<endl;
    }
    return 0;
}









*************************************************************

Accept






#include <cstring>
#include <iostream>
#include <queue>
using namespace std;
int ans;
int g[9][9]=
{
    1,1,1,1,1,1,1,1,1,
    1,0,0,1,0,0,1,0,1,
    1,0,0,1,1,0,0,0,1,
    1,0,1,0,1,1,0,1,1,
    1,0,0,0,0,1,0,0,1,
    1,1,0,1,0,1,0,0,1,
    1,1,0,1,0,1,0,0,1,
    1,1,0,1,0,0,0,0,1,
    1,1,1,1,1,1,1,1,1,
};
int dd[4][2]={-1,0,0,1,1,0,0,-1 };
int bz[10][10];
struct node{    int x,y,step;};
struct node s,e;
queue <node> q;

int bfs( )
{
    int i,x,y;
    node t,t2;
    q.push(s); bz[s.x][s.y]=1;
    while (!q.empty())
    {
        t=q.front();
        q.pop();
        if (t.x==e.x && t.y==e.y)  return t.step; 
        for (i=0; i<4; i++)
        {
            x=t.x+dd[i][0];
            y=t.y+dd[i][1];            
            if (g[x][y]==0&&!bz[x][y])
			{   t2.x=x;    t2.y=y;     t2.step=t.step+1;
				bz[x][y]=1;
                q.push(t2);
            }
        }
    }
}

int main()
{
    int n;
    cin>>n;
    while (n--)
    {   while (!q.empty()) q.pop();
    	memset(bz,0,sizeof(bz));
        cin>>s.x>>s.y>>e.x>>e.y;  s.step=0;
        cout<<bfs( )<<endl;
    }
    return 0;
}

  

转载于:https://www.cnblogs.com/wc1903036673/p/3458580.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值