BZOJ1597 & 洛谷2900:[USACO2008 MAR]Land Acquisition 土地购买——题解

http://www.lydsy.com/JudgeOnline/problem.php?id=1597

https://www.luogu.org/problemnew/show/P2900

约翰准备扩大他的农场,眼前他正在考虑购买N块长方形的土地。如果约翰单买一块土 地,价格就是土地的面积。但他可以选择并购一组土地,并购的价格为这些土地中最大的长 乘以最大的宽。比如约翰并购一块3 × 5和一块5 × 3的土地,他只需要支付5 × 5 = 25元, 比单买合算。 约翰希望买下所有的土地。他发现,将这些土地分成不同的小组来并购可以节省经费。 给定每份土地的尺寸,请你帮助他计算购买所有土地所需的最小费用。

为了写模拟赛的代码现学了斜率优化。

我们显然对于所有的土地按照长宽为第一、第二关键字降序排序,这样的话我们发现对于一块土地,要么它和它前面的土地捆绑买,要么和它后面的土地捆绑买,除此之外的买法显然不优。

那这样我们显然有一个O(n^2)的转移,接下来我们考虑优化。

我们要想优化dp,显然要有单调性,考虑到当一块土地的l和w都小于其它一些土地时它只能被捆绑买且对答案没有贡献,那么我们就可以删掉这些点。

那么剩下的点显然满足l单调降w单调升,于是先列出转移方程f[i]=min(f[k]+l[k+1]*w[i])。

考虑当k<j<i时,如果f[k]+l[k+1]*w[i]>f[j]+l[j+1]*w[i],那么显然j的状态是更优的,我们就可以把小的k踢出去。

将该式子可化为g[k,j]=(f[k]-f[j])/(l[j+1]-l[k+1])>w[i],于是我们有了一种判断当前状态是否需要被踢出的方法。

那么我们开一个单调队列,它的头就可以用这个方式维护。

至于它的尾,考虑当k<j<i时我们可以通过g[k,j]<g[j,i]来踢出j。

为什么?考虑如果g[j,i]>w我们就可以把j踢出。

如果g[k,j]<g[j,i]<w时那么显然k比j优,所以我们还可以把j踢出。

于是我们就能处理尾部了。

那么剩下的就很显然了,只有头指针代表的元素才是最优的,那么只从头处转移即可。

#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=50010;
inline int read(){
    int X=0,w=1;char ch=0;
    while(ch<'0'||ch>'9'){if(ch=='-')w=-1;ch=getchar();}
    while(ch>='0'&&ch<='9')X=(X<<1)+(X<<3)+ch-'0',ch=getchar();
    return X*w;
}
struct buy{
    ll l,w;
}a[N],b[N];
bool cmp(buy a,buy b){
    return a.l>b.l||(a.l==b.l&&a.w>b.w);
}
int n,cnt,l,r,maxw;
ll f[N],q[N];
inline double suan(int j,int k){
    return 1.0*(f[j]-f[k])/(b[k+1].l-b[j+1].l);
}
int main(){
    n=read();
    for(int i=1;i<=n;i++)
        a[i].l=read(),a[i].w=read();
    sort(a+1,a+n+1,cmp);
    for(int i=1;i<=n;i++){
        if(a[i].w>maxw){
            maxw=a[i].w;
            b[++cnt]=a[i];
        }
    }
    for(int i=1;i<=cnt;i++){
        while(l<r&&suan(q[l],q[l+1])<(double)b[i].w)l++;
        f[i]=f[q[l]]+b[q[l]+1].l*b[i].w;
        while(l<r&&suan(q[r],i)<suan(q[r-1],q[r]))r--;
        q[++r]=i;
    }
    printf("%lld\n",f[cnt]);
    return 0;
}

 

+++++++++++++++++++++++++++++++++++++++++++

+本文作者:luyouqi233。               +

+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+

+++++++++++++++++++++++++++++++++++++++++++

转载于:https://www.cnblogs.com/luyouqi233/p/8393561.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值