京东的供应链管理

   供应链管理对于电商企业是非常重要的一个环节。健全有保障的供应链系统能够为前线的渠道分销提供源源不断地货物,保证企业能够随时随地的满足客户的需 求。但是供应链作为一个庞大的系统,在管理上需要企业颇为一些脑筋。过于臃肿的供应系统不但会增加企业的人力成本和库存成本,还会影响企业及时的仓储调 动,降低管理效率。那么如何建立一条优秀的供应链保证企业商品有充足的造血能力?接下来,商刻导师就通过实例讲解,以京东为例,看看大公司是如何利用数据 管理供应链的。

 

1.销量预测
  京东仓储设备
  京东有118个大型仓库,占地面积230万,两千多个配送站,一千多个自提点,覆盖1855县区,合作伙伴六千家。
 


  需求管理
  在供应链和库存管理里面最最核心的就是需求管理。而需求管理在大数据需求下,需求预测成为大的核心。
 

  通过大数据来做需求预测,能做到自动补货、自动调拨、整体库存分析、SKU备货等,做到在用户下单之前就将商品送到最近的仓库。

 

 

  产品预测
  通过大数据来确定:用户购买商品、采购商品、预算价格、过程中补货、和库存管理里面最最核心的就是需求管理。而需求管理在大数据需求下,需求预测成为 大的核心。通过大数据来做需求预测,能做到自动补货、自动调拨、整体库存分析、SKU备货等,做到在用户下单之前就将商品送到最近的仓库。
  京东目前能做到:通过28天预测值,预测每一个sku未来量并驱动RDC与FDC的调拨和补货,保证商品量和限购率、人工智能来预测仓。
 

  预测模型
  由京东十几年的销售数据,再结合季节的变化、人均销售、促销因素来建立,同时再算法来预测未来的趋势,确定SKU的量及未来销售的量。
 

 

  数据清洗
  对于新品模型、保守模型、不动销模型、决策树模型、月均价格模型、市场需求回归模型等,均是由趋势跟随价格模型来预测整体销售情况。在这些过程中,必须要注意数据清洗。而在数据清洗的过程中凡是价格变动引起的因素,都需将整个模型进行清洗和过滤。
 

2.自动补货
  补货模型

  补货模型包括阶段性的补货与时间的匹配,保证库存不是一个最大的值而是一个最合理的值。

  用补货点与安全库存点的逻辑关系来驱动整个补货效率的提升。
 

  在补货的过程中纳入成本模型,只有在成本模型的驱动下,整个销售预测和模型才会更效。
 

3.健康库存
  库存健康系统

  库存健康模拟产品未来的一个的时间点,提前做出滞销、降价、退货等处理。补货模型包括阶段性的补货与时间的匹配,保证库存不是一个最大的值而是一个最合理的值。用补货点与安全库存点的逻辑关系来驱动整个补货效率的提升。
  在补货的过程中纳入成本模型,只有在成本模型的驱动下,整个销售预测和模型才会更效。
 

4.供应商罗盘
  供应链及供应商

  供应链能力:与供应商沟通,将京东的补货建议、库存建议发给供应商,一起做得更好。
  供应商罗盘:告诉供应商在哪个结点应该降价,配合降价应该做的补货,商品未来周期的分析并参与京东的促销和补货。

 

5.智慧选品
  选品模型
  商品未来的采购量是根据大数据下的行业报告、行业分析、用户模型和价值来预测的,并在未来某个时间点上,按照一些商品在整个过程中的定位,来做选品的工作。在大数据驱动下,友商商品数据、京东商品数据、行业报告数据、基于大数据预知处消费者的趋势和采购量。


6.智慧定价
  定价的过程考虑最大利润化、限货和库存周转过程、以及库存和处理滞销过程。

  采销可以根据定价看到商品毛利率,价格变动后的流量变化,库存周转情况以及风控平台来检验价格定位是否准确。
 

转载于:https://www.cnblogs.com/canwyq/p/6722281.html

### 解决 PP-OCRv4 出现的错误 当遇到 `WARNING: The pretrained params backbone.blocks2.0.dw_conv.lab.scale not in model` 这样的警告时,这通常意味着预训练模型中的某些参数未能匹配到当前配置下的模型结构中[^2]。 对于此问题的一个有效解决方案是采用特定配置文件来适配预训练权重。具体操作方法如下: 通过指定配置文件 `ch_PP-OCRv4_det_student.yml` 并利用已有的最佳精度预训练模型 (`best_accuracy`) 来启动训练过程可以绕过上述不兼容的问题。执行命令如下所示: ```bash python3 tools/train.py -c configs/det/ch_PP-OCRv4/ch_PP-OCRv4_det_student.yml ``` 该方案不仅解决了参数缺失带来的警告,还能够继续基于高质量的预训练成果进行微调,从而提升最终检测效果。 关于蒸馏的概念,在机器学习领域内指的是将大型复杂网络(teacher 模型)的知识迁移到小型简单网络(student 模型)。这里 student 和 teacher 的关系是指两个不同规模或架构的神经网络之间的指导与被指导的关系;其中 teacher 已经经过充分训练并具有良好的性能,而 student 则试图模仿前者的行为模式以达到相似的效果但保持更高效的计算特性。 至于提到的 `Traceback` 错误信息部分,由于未提供具体的跟踪堆栈详情,难以给出针对性建议。不过一般而言,这报错往往涉及代码逻辑错误或是环境配置不当等问题。为了更好地帮助定位和解决问题,推荐记录完整的异常日志,并仔细检查最近修改过的代码片段以及确认依赖库版本的一致性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值