搞了一段时间,hive2solr的job终于可以稳定的跑了,实现使用hive向solr插数据,主要是实现RecordWriter接口,重写write方法和close方法。下面对遇到的问题一一列出:
1.数据覆盖问题,使用原子更新
参考:http://caiguangguang.blog.51cto.com/1652935/1599137
2.重复构建solrserver和solrtable对象问题,使用static在初始化的时候构建,后面直接调用
构建:
public static Map<Integer,SolrServer> solrServers = new HashMap<Integer,SolrServer>();
public static Map<Integer,SolrTable> solrTables = new HashMap<Integer,SolrTable>();
public static String[] iparray;
public static String ipstring;
public static String collec;
static {
LOG .warn("in SolrServerCustom start initialize ip maps" );
ipstring = "xxxx,xxxxxx";
collec = "userinfo" ;
LOG .warn("in SolrServerCustom ipstring and collec: " + ipstring + "," + collec );
iparray = ipstring .split("," );
Arrays. sort( iparray);
for (int i=0;i< iparray. length;i++){
String urlx = "http://" +iparray [i]+"/solr/" + collec;
solrServers.put(i, new HttpSolrServer(urlx));
solrTables.put(i, new SolrTable(String.valueOf(i)));
}
LOG .warn("in SolrServerCustom end initialize ip maps,maps size " + solrServers .size());
LOG .warn("in SolrServerCustom end initialize ip mapsx,mapsx size " + solrTables .size());
}
引用:
public void write(Writable w) throws IOException {
MapWritable map = (MapWritable) w;
SolrInputDocument doc = new SolrInputDocument();
String key;
String value;
String newkey;
int idx;
for (final Map.Entry<Writable, Writable> entry : map.entrySet()) {
key = entry.getKey().toString();
newkey = this.tableName + "." + entry.getKey().toString();
value = entry.getValue().toString();
if(key.equals("id")){
idx = SolrUtil.getIntServer(value,SolrServerCustom.solrServers); //引用静态属性SolrServerCustom.solrServers
table = SolrServerCustom.solrTables.get(idx); //引用静态属性SolrServerCustom.solrTables
table.setNumInputBufferRows(this.numInputBufferRows);
}
if(key.equals("id")){
doc.addField("id",Integer.valueOf(value));
}else{
if (value.equals("(null)")){
value = "";
}
setOper = new LinkedHashMap<String,Object>();
setOper.put("set",value);
if(!doc.keySet().contains(newkey)){
doc.addField(newkey, setOper);
}
}
}
table.save(doc);
}
3.代码存在内存泄露问题
1)对象的声明,放在循环外,并调整outbuffer的大小
现象:yarn map/reduce java heap满导致job hang
错误日志:
2015-01-26 14:01:10,000 FATAL [main] org.apache.hadoop.mapred.YarnChild: Error running child : java.lang.OutOfMemoryError: GC overhead limit exceeded at java.lang.AbstractStringBuilder.<init>(AbstractStringBuilder.java:45) at java.lang.StringBuilder.<init>(StringBuilder.java:68) at com.chimpler.hive.solr.SolrWriter.write(SolrWriter.java:71) at org.apache.hadoop.hive.ql.exec.FileSinkOperator.processOp(FileSinkOperator.java:621) at org.apache.hadoop.hive.ql.exec.Operator.forward(Operator.java:793) at org.apache.hadoop.hive.ql.exec.SelectOperator.processOp(SelectOperator.java:87) at org.apache.hadoop.hive.ql.exec.Operator.forward(Operator.java:793) at org.apache.hadoop.hive.ql.exec.TableScanOperator.processOp(TableScanOperator.java:92) at org.apache.hadoop.hive.ql.exec.Operator.forward(Operator.java:793) at org.apache.hadoop.hive.ql.exec.MapOperator.process(MapOperator.java:540) at org.apache.hadoop.hive.ql.exec.mr.ExecMapper.map(ExecMapper.java:177) at org.apache.hadoop.mapred.MapRunner.run(MapRunner.java:54) at org.apache.hadoop.mapred.MapTask.runOldMapper(MapTask.java:428) at org.apache.hadoop.mapred.MapTask.run(MapTask.java:340) at org.apache.hadoop.mapred.YarnChild$2.run(YarnChild.java:160) at java.security.AccessController.doPrivileged(Native Method) at javax.security.auth.Subject.doAs(Subject.java:396) at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1438) at org.apache.hadoop.mapred.YarnChild.main(YarnChild.java:155)
2)try...catch....finally的使用(在finally中 clear buffer)
一开始没有增加finally,导致在异常发生时buffer会大于设置,最终导致job内存用满,hang住。
4.异常的处理
要求一个solrserver出错,或者solr暂时不响应时程序不能退出,默认情况下异常向上抛出,最终导致job失败
比如:
Caused by: org.apache.solr.client.solrj.impl.HttpSolrServer$RemoteSolrException: Expected content type application/octet-stream but got text/html. <html> <head><title>504 Gateway Time-out</title></head> <body bgcolor="white"> <center><h1>504 Gateway Time-out</h1></center> <hr><center>nginx/1.6.2</center> </body> </html>
防止异常的抛出会造成runtime error导致job失败,catch异常后不做处理
public void flush(){ try { if (!outputBuffer.isEmpty()) { server.add(outputBuffer); } } catch(Exception e){ LOG.warn("solrtable add error,Exception log is " + e); }finally{ outputBuffer.clear(); //在finally中清除buffer,否则会导致buffer在异常抛出时一直递增导致jvm oom的问题 } }
5.commit问题,调用close方法时,只有最后一个solrtable会close,开始时使用每插入一行就commit的方式,但是这种性能很差(大约50%的降低),后来在solrserver端控制commit
solrconfig.xml:
<autoCommit> <!--<maxTime>${solr.autoCommit.maxTime:15000}</maxTime>--> <maxDocs>15000</maxDocs> //当内存索引数量达到指定值的时候,将内存的索引DUMP到硬盘中,并通知searcher类加载新的索引 <maxTime>1000</maxTime> //每隔指定的时间段,自动的COMMIT内存中的索引数据,并通知Searcher类加载新的索引,以最先达到条件执行为准 <openSearcher>true</openSearcher> //设置为false时,虽然commit会导致index的变更flush到磁盘上,但是客户端不会看到更新 </autoCommit> <autoSoftCommit> <maxTime>${solr.autoSoftCommit.maxTime:10000}</maxTime> </autoSoftCommit>
这里autoCommit是指hard commit,如果不使用autoCommit也可以在add document时带上commitWithin的参数autoSoftCommit和autoCommit类似,但是它是一个solf类型的commit,可以确保数据可见但是没有把数据flush到磁盘,机器crash会导致数据丢失。
save也导致性能损耗,save会消耗6ms左右的时间,需要放到一个list中进行save操作(batch操作)
6.outbuffer的问题
初始的代码,因为对用solrtable来说只有一个入口(solrcloud时也一样),这样solrtable只有一个实例,这里用到了静态变量,每个solrtable不能按自己的buffer进行操作
改成非静态变量,并且使用静态代码块初始化table和server,放到一个hashmap中,用的时候去取,保证只有几个的实例。否则如果在使用时进行实例化,每次的对象都不同,导致buffer一直为1。
7.close的问题
如果设置了buffer,可能会导致不能flush
public void save(SolrInputDocument doc) {
outputBuffer.add(doc); //使用save放到buffer list中
if (outputBuffer.size() >= numOutputBufferRows) { //只有list的大小>=设置的buffer大小时才会触发flush的操作
flush();
}
}
而flush中会调用server.add(outputBuffer)操作。filesink关闭时调用SolrWriter.close
调用SolrTable的commit(commit中调用flush和server.commit),发现只有最后一个table实例会调用commit.
解决方法,在SolrWriter.close中循环调用SolrTable.commit方法:
public void close(boolean abort) throws IOException {
if (!abort) {
Map<Integer,SolrTable> maps = new SolrServerCustom().solrTable;
for(Map.Entry<Integer, SolrTable> entry:maps.entrySet()){
entry.getValue().commit();
}
} else {
table.rollback();
}
}
8.锁的问题,从nginx端看到大量的302 ,solr日志看到有锁的问题,调整参数,在solr启动时释放锁
solr端日志:
userinfo: org.apache.solr.common.SolrException:org.apache.solr.common.SolrException: Index locked for write for core userinfo
解决:solrconfig.xml中设置
<unlockOnStartup>true</unlockOnStartup>
原因:
org.apache.solr.core.SolrCore初始化时使用IndexWriter.isLocked(dir)判断是否加锁,如果已经加了锁,则分为两种情况,一种是在solrconfig.xml中配置了unlockOnStartup,会尝试unlock,如果没有配置unlockStartup,则会抛出Index locked for write for core异常
根据堆栈可以看对应代码:
org.apache.solr.core.SolrCore 构造函数中会调用initIndex方法:
void initIndex(boolean reload) throws IOException {
String indexDir = getNewIndexDir();
boolean indexExists = getDirectoryFactory().exists(indexDir);
boolean firstTime;
synchronized (SolrCore.class) {
firstTime = dirs.add(getDirectoryFactory().normalize(indexDir));
}
boolean removeLocks = solrConfig.unlockOnStartup; // unlockOnStartup = getBool(indexConfigPrefix+"/unlockOnStartup", false); 默认为false
initIndexReaderFactory();
if (indexExists && firstTime && !reload) {
Directory dir = directoryFactory.get(indexDir, DirContext.DEFAULT,
getSolrConfig().indexConfig.lockType);
try {
if (IndexWriter.isLocked(dir)) {
if (removeLocks) {
log.warn(
logid
+ "WARNING: Solr index directory '{}' is locked. Unlocking...",
indexDir);
IndexWriter.unlock(dir); //解锁
} else {
log.error(logid
+ "Solr index directory '{}' is locked. Throwing exception",
indexDir);
throw new LockObtainFailedException(
"Index locked for write for core " + name);
}
}
} finally {
directoryFactory.release(dir);
}
}
// Create the index if it doesn't exist.
if(!indexExists) {
log.warn(logid+"Solr index directory '" + new File(indexDir) + "' doesn't exist."
+ " Creating new index...");
SolrIndexWriter writer = SolrIndexWriter.create("SolrCore.initIndex", indexDir, getDirectoryFactory(), true,
getLatestSchema(), solrConfig.indexConfig, solrDelPolicy, codec);
writer.close();
}
}
9.tomcat的配置导致的问题,每台机器两个solr实例,其中一个一直不能启动(在实例化core时会尝试获取锁,这里获取锁失败,可以手动删除write.lock)
最终发现是两个tomcat写到了一个solr目录里面
错误日志:
Caused by: org.apache.lucene.store.LockObtainFailedException: Lock obtain timed out: NativeFSLock@/apps/dat/web/working/solr/cloud/storage/data/userinfo/data/index/write.lock at org.apache.lucene.store.Lock.obtain(Lock.java:89) at org.apache.lucene.index.IndexWriter.<init>(IndexWriter.java:710) at org.apache.solr.update.SolrIndexWriter.<init>(SolrIndexWriter.java:77) at org.apache.solr.update.SolrIndexWriter.create(SolrIndexWriter.java:64) at org.apache.solr.update.DefaultSolrCoreState.createMainIndexWriter(DefaultSolrCoreState.java:267) at org.apache.solr.update.DefaultSolrCoreState.getIndexWriter(DefaultSolrCoreState.java:110) at org.apache.solr.core.SolrCore.openNewSearcher(SolrCore.java:1513) ... 12 more
10.部分job运行缓慢,其中一个job运行了11个小时。。
原因:
数据写入时发生在mapoperator或者reduceoperator中,多少个map或者reduce就是多少个并发线程写入。job只有一个reduce,导致写入缓慢,调整reduce的数量到100(set mapreduce.job.reduces=100)后,性能大幅度提升,3kw数据导入时间由40916s下降到993s。
转载于:https://blog.51cto.com/caiguangguang/1612601